ASSESING THE GENERALIZED PROCESS CAPABILITY INDEX Cpyk FOR LOMAX DISTRIBUTION USING DIFFERENT ESTIMATION METHODS AND BOOTSTRAP CONFIDENCE INTERVAL
Abstract
Keywords
Full Text:
PDFReferences
T. W. ANDERSON : Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes. Ann Math Stat. 23 (1952), 193–212.
M. C. BRYSON : Heavy-tailed distributions: properties and tests. Technometrics. 16 (1974), 61–68.
L. L. CHAN, F. SPIRING, and H. XIAO : An OC curve approach for analyzing the process capability index Cpk. Technical Report, Canada, Department of Statistics, University of Manitoba. (1988).
R. C. H. CHENG, and N. A. K. AMIN : Maximum product-of spacings estimation with applications to the log-normal distribution. Math Report, Department of Mathematics, UWIST, Cardiff. (1979).
P. CHEN, B. X. WAN, and Y. E. ZHI-SHENG : Yield-based process capability indices for nonnormal continuous data. J Qual Technol. 51 (2019), 171–180.
I. S. CHOI, and D. S. BAI : Process capability indices for skewed distributions. Proceedings of 20th International Conference on Computer and Industrial Engineering. Kyongju, Korea. (1996), 1211—1214.
B. C. CHOI, and D. B. OWEN : A study of a new process capabily index. Communications in Statistics-Theory and Methods. 19 (2019), 1231–1245.
Y. M. CHOU, D. B. OWEN and S. A. BORREGO : Lower Confidence Limits on Process Capability Indices. Journal of Quality Technology. 22 (1990). 223–229.
J. A. CLEMENTS : Process capability calculations for non-normal distributions. Qual Prog. 22 (1989), 95–97.
G. K. CONSTABLE and J. R. HOBBS : Small samples and nonnormal capability. In: ASQC Quality Congress Transactions, New York, NY. (1992). 37–43.
S. DEY and M. SAHA : Bootstrap confidence intervals of generalized process capability index C pyk using different methods of estimation. Journal of Applied Statistics. 46 (2019). 1843-1869.
S. DEY, M. SAHA, S. S. MAITI and C. H. JUN : Bootstrap confidence intervals of generalized process capability index Cpyk for Lindley and power Lindley distributions. Commun Stat Simul Comput. 47 (2017). 249–262.
B. EFRON : The Jackknife, the bootstrap and other re-sampling plans. Philadelphia, PA: SIAM;1982. (SIAM, CBMS-NSF Monograph; 38).
B. EFRON and R. TIBSHIRANI : Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci. 1 (1986). 54–75.
L. A. FRANKLIN and W. GARY : Bootstrap confidence interval estimates of Cpk: an introduction. Commun Stat Simul Comput. 20 (1986). 231–242.
I. GEDIK BALAY : Estimation of the generalized process capability index C pyk based on bias-corrected maximum-likelihood estimators for the generalized inverse Lindley distribution and bootstrap confidence intervals. Journal of Statistical Computation and Simulation. 91 (2021). 1960–1979.
D. E. GILES, H. FENG and R. T. GODWIN : On the bias of the maximum likelihood estimator for the two-parameter Lomax distribution. Communications in Statistics-Theory and Methods. 42 (2013). 1934–1950.
B. H. GUNTER : The use and abuse of Cpk. Qual Prog. 22 (1989). 108–109.
A. S. HASSAN and A. S. AL-GHAMDI : Optimum step stress accelerated life testing for Lomax distribution. J. Appl. Sci. Res. 5 (2009). 2153–2164.
T. C. HSIANG and G. A. TAGUCHI : A tutorial on quality control and assurance. Annual Meeting on the American Statistical Association. Las Vegas (NV) (unpublished presentation). 1985.
O. HOLLAND, A. GOLAUP and A. H. AGHVAMI : Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proceedings-Communications. 135 (2006). 683–690.
C. W. HONG, J. W. WU and C. H. CHENG : Implementing lifetime performance index for the pareto lifetime businesses of the service industries. Quality & quantity. 43 (2009). 291–304.
X. HU, and W. GUI : Assessing the lifetime performance index with Lomax distribution based on progressive type I interval censored sample. Journal of Applied Statistics. 47 (2020). 1757-1775.
J. M. JURAN. : Juran’s Quality Control Handbook. 3rd. New York, N.Y.: McGraw-Hill. (1974).
V. E. KANE. : Process capability indices. J Qual Technol. 18 (1986). 41–52.
M. KASHIF, M. ASLAM, A. H. AL-MARSHADI and C. H. JUN : Capability indices for non-normal distribution using Gini’s mean difference as measure of variability. IEEE Access. (2010). 7322–7330.
M. KASHIF, M. ASLAM, G. S. RAO, A. H. AL-MARSHADI and C. H. JUN. : Bootstrap confidence intervals of the modified process capability index for Weibull distribution. J Qual TechnolArabian J. Sci. Eng. (2017). 4565–4573.
H. S. LOMAX. : Business failures: Another example of the analysis of failure data. J. Amer. Statist. Assoc. 49 (1954). 847–852.
V. LEIVA, C. MARCHANT, H. SAULO. and F. ROJAS : Capability indices for Birnbaum-Saunders processes applied to electronic and food industries. J Appl Stat. 19 (2014). 1881–1902.
P. D. M. MACDONALD : Comment on an estimation procedure for mixtures of distributions by Choi and Bulgren. J R Stat Soc Ser B. 33 (1971). 326–329.
M. A. W. MAHMOUD, R. M. EL-SAGHEER, A. A. E. SOLIMAN. and A. H. ABD ELLAH : Inferences of the lifetime performance index with Lomax distribution based on progressive type-II censored data. Economic Quality Control. 29 (2014). 39–51.
S. S. MAITI, S. MAHENDRA, and K. N. ASOK : On generalizing process capability indices. Quality Technology & Quantitative Management. 7 (2010). 279–300.
S. P. MUKHERJEE and N. K. SINGH : Sampling properties of an estimator of a new process capability index for Weibull distributed quality characteristics. Qual Eng. 10 (1997). 291–294.
A. M. NIGM and H. I. HAMDY : Bayesian prediction bounds for the Pareto lifetime model. Commun. Stat. Theory Met. 16 (1987). 1761–1772.
M. JABBARI NOOGHABI : Process capability indices in normal distribution with the presence of outliers. Journal of Applied Statistics. 47 (2020). 2443–2478.
C. PARK, S. DEY, L. OUYANG, J. H. BYUN and M. LEEDS : Improved bootstrap confidence intervals for the process capability index Cpk. Communications in Statistics-Simulation and Computation. 49 (2020). 2583–2603.
W. L. PEARN and K. S. CHEN : One sided capability indices Cpu and Cpl: decision making with sample information. International journal of quality & reliability management. (2002).
W. L. PEARN,and K. S. CHEN : Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectron. Reliab. 37 (1997). 1853–1858.
W. L. PEARN, S. KOTZ and N. L. JOHNSON : Distributional and inferential properties of process capability indices.J Qual Technol. 24 (1992). 216–231.
W. L. PEARN, Y. T. TAI, I. F. HSIAO and Y. P. AO : Approximately unbiased estimator for non-normal process capability index Cnpk. J Test Eval. 42 (2014). 1408—1417.
W. L. PEARN, G. H. LIN, and K. S. CHEN : Distributional and Inferential Properties of the Process Accuracy and Process Precision Indices. Communications in Statistics – Theory and Methods. 27 (1998). 985–1000.
C. PENG : Parametric lower confidence limits of quantile-based process capability indices. J. Qual. Technol. Quant. Manage. (2010a). 199–214.
C. PENG : Estimating and testing quantile-based process capability indices for processes with skewed distributions. J. Data. Sci. (2010b). 253–268.
B. RANNEBY : The maximum spacing method. an estimation method related to the maximum likelihood Method. Scand J Statist. 11 (1984). 93–112.
G. S. RAO, M. ASLAM and R. R. L. KANTAM : Bootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions. J Stat Comput Simul. 86 (2016). 862–873.
M. SAHA, S. DEY, A. S. YADAV and S. KUMAR : Classical and Bayesian inference of C py for generalized Lindley distributed quality characteristic. Quality And Reliability Engineering International. 25 (2019). 2593–2611.
M. SAHA, S. DEY, and S. S. MAITI : Parametric and nonparametric bootstrap confidence intervals of CNpk for exponential power distribution. J Ind Prod Eng. 35 (2018). 160–169.
J. SWAIN, S. VENKATRAMAN, and J. WILSON : Least squares estimation of distribution function in Johnsons translation system. J Stat Comput Simul. 29 (1988). 271–297.
L. A. FRANKLIN and G. S. WASSERMAN : A Note on the Conservative Nature of the Tables of Lower Confidence Limits for Cpk with a Suggested Correction. Communications in Statistics – Simulation and Computation. 21 (1992). 1165–1169.
S. WEBER, T. RESSURREICAO and C. DUARTE : Yield prediction with a new generalized process capability index applicable to nonnormal data. IEEE Trans Comput Aided Design Integrated Circuits Syst. 35 (2016). 931–942.
A. WONGE : Approximate studentization for Pareto distribution with application to censored data. Stat.Papers. 39 (1998). 189—201.
L. S. ZIMMER and N. F. HUBELE : Quantiles of the sampling
distribution of Cpm. Qual Eng. 10 (1998). 309–329.
DOI: https://doi.org/10.22190/FUMI220407036B
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)