SOBOLEV SPACES OVER $\R^\infty$

Hemanta Kalita

DOI Number
https://doi.org/10.22190/FUMI220506052K
First page
751
Last page
771

Abstract


Our goal in this article is to construct Sobolev  spaces over $\R^\infty.$ Completeness of the Sobolev space over $\R^\infty$ are discussed. In application we have constructed the Sobolev spaces on a separable  Banach space $B.$

Keywords

Distribution on $\R_I^\infty;$ Sobolev space; continuous embedding; Separable Banach spaces

Full Text:

PDF

References


bibitem{MA} {sc M. A-Algwaiz}, textit{Theory of Distributions,} Pure and Applied Mathematics, Monograph, Marcel Dekker, Inc, 1992.

bibitem {Driver} {sc Bruce K. Driver}, textit{Analysis tools with application}, Springer, 2003.

bibitem{SI} S. Coulibalt, I. Fofana, On Lebesgue Integrability of Fourier Transforms and Amalgam Spaces, J. Fourier Anal. Appl. {bf 25}(2019) 184--209.

bibitem{Brezis} {sc Haim Brezis}, textit{Functional Analysis, Sobolev Spaces and Partial

Differential Equations,} Springer, 2010.

bibitem{DS} {sc N. Dunford, J. T. Schwartz}, {it Linear operators part I}: General Theory, Wiley classics edition, Wiley Interscience, New York, 1988.

bibitem{FM} {sc F. G. Friedlander, M. Joshi}, {it Introduction to the theory of Distributions}, Cambridge University Press, 1982.

bibitem{Friedrichs}{sc K. O. Friedrichs}, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. {bf 55} (1)(1944) 132--151.

bibitem{Gill} {sc T. L. Gill, W. W. Zachary}, {it Functional Analysis and the Feynman operator Calculus}, Springer New York, 2016.

bibitem{GHB}{sc T. L. Gill, H. Kalita, B. Hazarika}, {it A family of Banach spaces over $R^infty$}, Proceedings of the Singapore National Academy of Science, {bf 6 }(1) 1 (2010) 1--9.

bibitem{GM} {sc T. L. Gill, T. Myers}, {it Constructive Analysis on Banach spaces}, Real Analysis Exchange {bf 44} (2019) 1--36.

bibitem{JH} {sc J. Kinnunen}, { it Sobolev Spaces}, Department of Mathematics and Systems Analysis, Aalto University, 2017.

bibitem{KB}{sc J. Kuelbs}, textit{Gaussian measures on a Banach space}. J. Funct. Anal. {bf 5}(1970) 354--367.

bibitem{GL} {sc G. Leoni}, {it A first course in Sobolev spaces}, AMS Graduate studies in Mathematics, Vol. 105, American Mathematical Society, Providence, RI, 2009.

bibitem[RS]{RS} {sc R. E Showalter}, {it Hilbert Space methods for Partial Differential Equation}, Electronic Journal of Differential Equations, Monograph 01, 1994.

bibitem{WM} {sc W. Mclean}, textit{ Strongly Elliptic Systems and boundary Integral equation}, Cambridge University Press, 2000.

bibitem{S} {sc R. E. Showalter}, textit{Hilbert Space Methods for Partial Differential Equations}, Electronic Journal of Differential Equations Monograph 01, 1994.

bibitem{JCS}{sc J. C. Sampedro}, {it On the space of infinite dimensional integrable functions}, J. Math. Anal. Appl. {bf 488}(2020) 124043, 1--27.

bibitem{Sobolev}{sc S. L. Sobolev}, {it Sur un th'or'me d'analyse fonctionnelle}

Recueil Mathématique (Matematicheskii Sbornik) (in Russian and French), {bf 4}(46)(3)(1938) 47--497.

bibitem{MV} {sc M. Vladimir}, {it Localization moduli of Sobolov embeddings for general domains}, In Sobolov spaces (A series of Comprehensive studies in Mathematics) Vol 342, pp 435--459, Springer, Berlin, Heidelberg 2011.

bibitem{YY} {sc Y. Yamasaki}, {it Measures on infinite dimensional spaces}, Series in Pure Mathematics, Volume 5, World Scientific Publishing Co. Pvt. Ltd, 1985.




DOI: https://doi.org/10.22190/FUMI220506052K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)