MATRIX TRANSFORMS OF SUBSPACES OF SUMMABILITY DOMAINS OF NORMAL MATRICES DETERMINED BY SPEED

Ants Aasma, Pinnangudi N. Natarajan

DOI Number
https://doi.org/10.22190/FUMI220513053A
First page
773
Last page
782

Abstract


Let X, Y be two subspaces of summability domains of matrices with real or complex entries defined by speeds of the convergence, i.e.; by monotonically increasing positive sequences λ and µ. In this paper, we give necessary and sufficient conditions for a matrix M (with real or complex entries) to map X into Y , where X is the subspaces of summability domain of a normal matrix A defined by the speed λ and Y is the subspace of a lower triangular matrix B defined by the speed µ. As an application we consider the case if A is the Riesz method (R, p_n).

Keywords

Matrix transforms, boundedness and summability with speed, Riesz method.

Full Text:

PDF

References


bibitem{Aasma}

{sc A. Aasma, H. Dutta {rm and} P. N. Natarajan}: textit{An Introductory Course in Summability Theory}.

John Wiley and Sons, Hoboken, USA, 2017.

bibitem{Aasma3}

{sc A. Aasma}: textit{Matrix transformations of $lambda$-boundedness fields of

normal matrix methods}. Studia Sci. Math. Hungar. {bf 35} (1999), 53--64.

bibitem{Aasma14}

{sc A. Aasma}: textit{Matrix transformations of $lambda$-summability fields of $lambda$-reversible and $lambda$-perfect methods}.

Comment. Math. Prace Mat. {bf 38} (1998), 1--20.

bibitem{Boos}

{sc J. Boos}: textit{Classical and Modern Methods in Summability}.

University Press, Oxford, 2000.

bibitem{Kangro1}

{sc G. Kangro}: textit{On the summability factors of the Bohr-Hardy type for a

given speed I}.

Proc. Estonian Acad. Sci. Phys. Math. {bf 18} (1969), 137--146 (in Russian).

bibitem{Kangro3}

{sc G. Kangro}: textit{Summability factors for the series $lambda$-bounded by

the methods of Riesz and Ces$grave{a}$ro}.

Acta Comment. Univ.

Tartuensis {bf 277} (1971), 136--154 (in Russian).

bibitem{Natarajan}

{sc P. N. Natarajan}: textit{Classical summability theory}.

Springer, 2017.

bibitem{Stieglitz}

{sc M. Stieglitz {rm and} H. Tietz}: textit{Matrixtransformationen von

Folgenr$ddot{a}$umen. Eine Ergebnis$ddot{u}$bersicht}. Math. Z. {bf 154} (1977), 1--14.




DOI: https://doi.org/10.22190/FUMI220513053A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)