SOME RESULTS ON $\beta$-ALMOST SOLITONS ON ALMOST CO-K\"{A}HLER MANIFOLDS
Abstract
The object of the present paper is to study $\beta$-almost Yamabe solitons and $\beta$-almost Ricci solitons on almost co-K\"{a}hler manifolds. In this paper, we prove that if an almost co-K\"{a}hler manifold $M$ with the Reeb vector field $\xi$ admits a $\beta$-almost Yamabe solitons with the potential vector field $\xi$ or $b\xi$, where $b$ is a smooth function then manifold is $K$-almost co-K\"{a}hler manifold or the soliton is trivial, respectively. Also, we show if a closed $(\kappa,\mu)$-almost co-K\"{a}hler manifold $M^{n}$ with $n>1$ and $\kappa<0$ admits a $\beta$-almost Yamabe soliton then the soliton is trivial and expanding. Then we study an almost co-K\"{a}hler manifold admits a $\beta$-almost Yamabe soliton or $\beta$-almost Ricci soliton with $V$ as the potential vector field, $V$ is a special geometric vector field.
Keywords
Full Text:
PDFReferences
bibitem{EB} {sc D. E. Blair}, textit{Contact manifold in Riemannain geometry}, Lecture notes in mathematics, {bf 509}, Springer-Verlag, Berlin, 1976.
bibitem{DEB} {sc D. E. Blair}, textit{Riemannian geometry on contact and symplectic manifolds}, Progress in mathematics, 203, Birkh"{a}user Boston, Inc, Boston, MA, 2002.
bibitem{MB} {sc A. M. Blaga {rm and} M. Crasmareanu}, textit{Torse forming $eta$-Ricci solitons in almost para-contact $eta$-Einstein geometry}, Filomat, {bf31}(2) (2017), 499-504.
bibitem{BC} {sc B. Cappellletti-Montano, A. D. Nicola {rm and} I. Yudin}, textit{ A survey on cosymplectic geometry}, Rev. Math. Phys., {bf25} (2013), 1343002 (2013).
bibitem{BYC} {sc B. Y. Chen}, textit{Rectifying submanifolds of Riemannian manifolds and torqued vector fields}, Kragujevac J. Math., {bf41}(1) (2017), 93-103.
bibitem{YC} {sc B. Y. Chen}, textit{Classification of torqued vector fields and its application to Ricci solitons}, Kragujevac J. Math., {bf41}(2) (2017), 239-250.
bibitem{DC} {sc D. Chinea, M. Deleon {rm and} J. C. Marrero}, textit{Topology of cosymplectic manifolds}, J. Math. Pures Appl., {bf72} (1993), 567-591.
bibitem{C}{sc J. T. Cho {rm and} M. Kimura}, textit{Ricci solitons and real hypersurfaces in a complex space form}, Tohoku Math. J., {bf19} (2014), 13-21.
bibitem{PD} {sc P. Dacko {rm and} Z. Olszak}, textit{On almost cosymplectic $(kappa, mu)$-space}, Banach center Publ., 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005, 211-220.
bibitem{HE}{sc H. Endo}, textit{Non-existence of almost cosymplectic manifolds satisfying a certain condition}, Tensor (N. S.) {bf63} (2002), 272-284.
bibitem{F} {sc D. Friedan}, textit{Nonlinear models in $2+epsilon$ dimensions}, Ann. Phys., {bf163} (1985), 318-419.
bibitem{GHA}{sc H. Gahremani-Gol}, textit{Some results on $h$-almost Ricci solitons}, J. Geom. Phys., {bf137} ( 2019), 212-216.
bibitem{JNG} {sc J. N. Gomes, Q. Wang {rm and} C. Xia}, textit{On the $h$-almost Ricci soliton}, J. Geom. Phys., {bf114} (2017), 216-222.
bibitem{G} {sc A. Ghosh, R. Sharma {rm and} J. T. Cho}, textit{Contact metric manifolds with $eta$-parallel torsion tensor}, Ann. Glob. Anal. Geom., {bf34} (2008), 287-299.
bibitem{H} {sc R. S. Hamilton}, textit{Three manifolds with positive Ricci curvature}, J. Differential Geom., {bf 17} (1982), 255-306.
bibitem{KH} {sc S. K. Hui, S. S. Shuukla {rm and} D. Chakraborty}, textit{$eta$-Ricci solitons on $eta$-Einstein Kenmotsu manifolds}, Global Journal of advanced research on classical and modern geometries, {bf 6} (1) (2017), 1-6.
bibitem{DKP}{sc D. Kar {rm and} P. Majhi}, textit{Beta-Almost Ricci solitons on almost coK"{a}hler manifolds}, Korean J. Math., {bf 27}(3) (2019), 691-705.
bibitem{CM} {sc J. C. Marrero {rm and} E. Padron}, textit{New examples of compact cosymplectic solvmanifolds}, Arch. Math., {bf 34} (1998), 337-345.
bibitem{ZO} {sc Z. Olszak}, textit{On almost cosymplectic manifolds}, Kodai math. J., {bf4 }(1981), 239-250.
bibitem{ZOL} {sc Z. Olszak}, textit{On almost cosymplectic manifolds with K"{a}hlerian leaves}, Tensor (N. S.), {bf46} (1987), 117-124.
bibitem{SP} {sc S. Pigola, M. Rigoli, M. Rimoldi {rm and} A. Setti}, textit{Ricci almost solitons}, Ann. Scuola Norm. Sup. Pisa Cl. Sci., {bf 5} (2011), 757-799.
bibitem{S} {sc R. Sharma}, textit{Certain results on $K$-contact and $(kappa, mu)$-contact manifolds}, J. Geom., {bf89} (2008), 138-149.
bibitem{JS} {sc Y. J. Suh}, U. C. De, textit{Yamabe solitons and Ricci solitons on almost co-K"{a}hler manifolds}, Cand. Math. Bull., {bf 62}(3) (2019), 653-661.
bibitem{YW} {sc Y. Wang}, textit{A generalization of Goldberg conjecture for co-K"{a}hler manifolds}, Mediterr. J. Math., {bf13} (2016), 2679-2690.
bibitem{W} {sc E. Woolgar}, textit{Some applications of Ricci flow in physics}, Can. J. Phys., {bf 86} (2008), 645-651.
bibitem{KY} {sc K. Yano}, textit{Integral formulas in Riemannian geometry}, New York, Marcel Dekker, 1970.
DOI: https://doi.org/10.22190/FUMI220521054A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)