APPROXIMATING COMMON ELEMENTS OF FIXED POINTS OF BREGMAN TOTALLY QUASI-ASYMPTOTICALLY NONEXPANSIVE MAPPINGS AND SOLUTIONS OF A SYSTEM OF GENERALIZED MIXED EQUILIBRIUM PROBLEMS IN REFLEXIVE BANACH SPACES
Abstract
In this paper, we introduce a hybrid iterative method for approximating common elements of common fixed points of a finite family of Bregman totally quasiasymptotically nonexpansive mappings and solutions of a finite system of generalized mixed equilibrium problems. After that, a strong convergence result for the proposed iterative method is established and proved in reflexive Banach spaces. By this result, we get some convergence results for generalized mixed equilibrium problems in reflexive Banach spaces. Furthermore, we give a numerical example to illustrate the obtained results.
Keywords
Full Text:
PDFReferences
A. Ambrosetti and G. Prodi , A Primer of nonlinear analysis. Cambridge: Cambridge University Press, 1993.
P.~K. Anh and C.~V. Chung, emph{Parallel hybrid methods for a finite family of relatively nonexpansive mappings}, Numer. Funct. Anal. Optim., 35 (2014), 649 -- 664.
E. Blum and W. Oettli, emph{From optimization and variational inequalities to equilibrium problems}, Math. Stud., 63 (1994), 123 -- 145.
H. H. Bauschke, J. M. Borwein, and P. L. Combettes, textit{Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces}, Commun. Contemtr. Math., 3(2001), 615 -- 647.
M. J. Borwein, S. Reich, and S. Sabach, textit{A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept}, J. Nonlinear Convex Anal., 12(1) (2011), 161 -- 184.
D. Butnariu and A. N. Iusem, Totally convex functions for fixed points computation and infinite
dimensional optimization, Applied optimization, vol. 40. Kluwer Academic, Dordrecht, 2000.
D. Butnariu and W. Resmerita, textit{Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces}. Abstr. Appl. Anal., 2006 (2006), mbox{1 -- 39.}
Y. Censor and A. Lent, textit{An iterative row-action method for interval convex programming}, J. Optim. Theory Appl., 34 (1981), 321 -- 353.
S. S. Chang, L. Wang, X. R. Wang, and C. K. Chan, textit{Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces}, Appl. Math. Comput., 228 (2014), 38 -- 48.
C. E. Chidume, S. I. Ikechukwu, and A. Adamu, textit{Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps}, Fixed Point Theory Appl., 2018:9 (2018), 1 -- 9.
V. Darvish, textit{Strong convergence theorem for generalized mixed equilibrium problems and Bregman nonexpansive mapping in Banach spaces}, Math. Morav., 20(1) (2016), mbox{69 -- 87.}
V. Darvish, textit{Strong convergence theorem for a system of generalized mixed equilibrium problems and finite family of Bregman nonexpansive mappings in Banach spaces}, Opsearch., 53(3) (2016), mbox{584 -- 603.}
V. Darvish, textit{A strong convergence theorem which is to find a common fixed point of a finite family of Bregman nonexpansive mappings in Banach spaces which solves a generalized mixed equilibrium problem}, Boll. Unione Mat. Ital., 9 (2016), 421 -- 434.
Q. L. Dong, H. B. Yuan, C. Y. J. Cho and T. M. Rassias, textit{Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings}. Optim. Lett., 12 (2018), 87 -- 102.
J. B. Hiriart-Urruty and C. Lemar'{e}chal, Grundlehren der mathematischen Wissenschaften, in: Convex Analysis and Minimization Algorithms II, 306, SpringerVerlag, 1993.
W. Kumam, U. Witthayarat, P. Kumam, S. Suantai, and K. Wattanawitoon, textit{Convergence theorem for equilibrium problem and Bregman strongly nonexpansive mappings in Banach spaces}, Optimization, 65(2) (2016), 265 -- 280.
F. Kohsaka and W. Takahashi, textit{Proximal point algorithms with Bregman functions in Banach spaces}, J. Nonlinear Convex
Anal., 6(3) (2005), 505 -- 523.
P. E. Mainge, textit{Convergence theorems for inertial KM-type algorithm} J. Comput. Appl. Math. textbf{219} (2008), 223 -- 236.
X. Naraghirad and J. C. Yao, textit{Bregman weak relatively nonexpansive mappings in Banach spaces}, Fixed Point Theory Appl., 2013(141) (2013), 1 -- 43.
R. Ni, textit{Hybrid iterative algorithm for an infinite families of closed, uniformly asymptotic regular and uniformly Bregman totally quasi-$D$-asymptotically nonexpansive mappings in Banach spaces}, J. Nonlinear Sci. Appl., 9 (2016), 4924 -- 4948.
R. Ni and C. Wen, textit{Hybrid projection methods for Bregman totally quasi-$D$-asymptotically nonexpansive mapping}s, Bull. Malays. Math. Sci. Soc., 41 (2018), mbox{807 -- 836.}
J .W. Peng and J . C. Yao, textit{A new hybrid-extragradient method for generalized mixed euqilibrium problems, fixed point problems and variational inequality problems}, Taiwanese J. Math., 12 (2008), 1401 -- 1432.
R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, 1364, Springer-Verlag, Berlin, 1993.
A. Phon-on, N. Makaje, A. Sama-Ae, and K. Khongraphan, textit{An inertial $S$-iteration process}, Fixed Point Theory Appl. textbf{2019:4} (2019), 1 -- 14.
X. Qin, S. Y. Cho, S. M. Kang, emph{On hybrid projection methods for asymptotically quasi-$phi$-nonexpansive mappings}, Appl. Math. Comput. textbf{215} (2010), 3874 -- 3883.
S. Reich and S. Sabach, textit{Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces}, Nonlinear Anal., 73 (2010), 122 -- 135.
S. Reich and S. Sabach, textit{Two strong convergence theorems for a proximal method in reflexive Banach spaces}, Numer. Funct. Anal. Optim., 31 (2010), mbox{22 -- 44.}
S. Reich and S. Sabach, textit{A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces}, J. Nonlinear Convex Anal., 10 (2009), 471 -- 485.
X. Resmerita, textit{On total convexity, Bregman projections and stability in Banach spaces}, J. Nonlinear Convex Anal., 11 (2004), 1 -- 16.
S. Sabach, textit{Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces}, SIAM J. Optim., 21 (2011), 1289 -- 1308.
T. M. Tuyen, textit{Parallel iterative methods for solving systems of generalized mixed equilibrium problems in reflexive Banach spaces}, Optimization, 66(4) (2017), 623 -- 629.
T. M. Tuyen, textit{Parallel iterative methods for Bregman strongly nonexpansive operators in reflexive
Banach spaces}, J. Fixed Point Theory Appl, 19 (2017), 1695 -- 1710.
C. Zalinescu, Convex analysis in general vector spaces, World Scientific, River~Xdge, 2002.
Y. H. Zhao, S. S. Chang, and J. H. Zhu, textit{Strong convergence theorems for Bregman quasi-asymptotically nonexpansive mappings and equilibrium problem in reflexive Banach spaces},
Math. Inequal. Appl, 16(4) (2013), 1171 -- 1183.
.
S. Zhu and J. H. Huang , textit{Strong convergence theorems for equilibrium problem and Bregman totally quasi-asymptotically nonexpansive mapping in Banach spaces}, Acta Math. Sci. Ser. A Chin. Ed., 36B(5) (2016), 1433 -- 1444.
DOI: https://doi.org/10.22190/FUMI220603026H
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)