SOME RESULTS ON RICCI SOLITON ON CONTACT METRIC MANIFOLDS
Abstract
Keywords
Full Text:
PDFReferences
Z. Ahsan: Ricci Solitons and the Spacetime of General Relativity, J.T.S., 12 (2018), 49–64.
M. Ali, and Z. Ahsan: Ricci Solitons and symmetries of spacetime manifold of general
relativity, Global Journal of Advanced Research on Classical and Modern Geometries, 2, (2014), 75–84.
B.B. Chaturvedi and P. Pandey: Study on special type of a weakly symmetric Kahler
manifold, Diffenetial Geometry-Dynamical System, 17, (2015), 32-37.
B.B. Chaturvedi and P. Pandey: Some Examples on Weak Symmetries, General Mathematics Notes, 29, (2015), 61–66.
S.K. Chaubey and U.C. De Three-Dimensional Riemannian Manifolds and Ricci Solitons, Quaestiones Mathematicae, (2021) DOI:10.2989/16073606.2021.1895352.
K. De, U.C. De, A.A. Syied, N.B. Turki and S. Alsaeed: Perfect Fluid Spacetimes
and Gradient Solitons, Journal of Nonlinear Mathematical Physics, (2022), DOI:10.1007/s44198-022-00066-5.
U.C. De, C.A. Mantica, and Y. Suh: Perfect fluid spacetimes and gradient solitons, Filomat, 36(3), (2022), 829–842.
U.C. De, A. Sardar and K. De: Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of Mathematics, 46(3), (2022), 1078–1088.
U.C. De and A.A. Shaikh: Differential Geometry of Manifolds, Narosa Publishing House (2007).
R.S. Hamilton: Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17, (1982), 255–306.
A. Haseeb and S.K. Choubey: Lorentzian Para Sasakian Manifolds and *Ricci Solitons, Kragujevac Journal of Mathematics, (2021), 167-–179.
S.K. Hui, R.S. Lemence and D. Chakraborty: Ricci Solitons on Ricci Pseudosymmetric (LCS)n-Manifolds, [math.DG] (2017).
S.K. Hui, S.K. Yadav and A. Patra: Almost Conformal Ricci Solitons on f-Kenmotsu Manifolds, Khayyam J. Math. , 5(1), (2019), 89–104.
Y.C. Mandal and S.K. Hui: Yamabe Solitons with potential vector field as torse
forming, CUBO A Mathematical Journal, 20 (2018), 37–47.
K. Matsumoto: On Lorentzian paracontact manifolds, Bull. of Yamagata Univ.,
Nat. Sci. 12 , (1989), 151–156.
K. Matsumoto and I. Mihai: On a certain transformation in a Lorentzian para
Sasakian manifold, Tensor, N.S. 47, (1988), 189–197.
I. Mihai and R. Rosca: On Lorentzian P-Sasakian manifolds, Classical Analysis,
World Scientific Publi., (1992), 159–169.
H.G. Nagaraja and K. Venu: Ricci Solitons in Kenmotsu Manifold, Journal of
Informatics and Mathematical Sciences, 8(1), (2016), 29–36.
P. Pandey: On Weakly Cyclic Generalized Z-Symmetric Manifolds, Natl. Acad.
Sci. Lett., 43, (2020), 347–350.
P. Pandey and B.B. Chaturvedi On a Lorentzian Complex Space Form, Natl.
Acad. Sci. Lett., 43, (2020), 351–353.
G.P. Pokhariyal: Study of a new curvature tensor in a Sasakian manifold, Tensor
N.S. 36(2), (1982), 222–226.
G.P. Pokhariyal and R. S. Mishra: Curvature tensors and their relativistics
significance, Yokohama Mathematical Journal, 18 (1970), 105–108.
S. Roy, S. Dey and A. Bhattacharya: Yambe Solitons on (LCS)n-manifolds,
arXiv:1909.06551v1 [math.DG] (2019).
B. Shanmukha and V. Venkatesha: Some Ricci solitons on Kenmotsu manifold,
The Journal of Analysis, (2020).
A. Sardar, U.C. De and B. Nazafi: 3-Dimensional f -Kenmotsu Manifolds And
Solitons, International Journal of Geometric Methods in Modern Physics,
(2022), doi:10.1142/S0219887822501997.
A.A. Shaikh: On Lorentzian almost paracontact manifolds with a structure of the
concircular type, Kyungpook Math.Journal, 43, (2003), 305-314.
A.A. Shaikh: Some Results On (LCS)n Manifolds, Journal of Korean Mathematical
Society, 46, (2009), 449-461.
A.A. Shaikh and S. Biswas: On LP-Sasakian manifolds, Bull. Malaysian Math.
Sc. Soc. (Second Series), 27, (2004), 17–26.
A.A. Shaikh and S.K. Hui: On extended generalized ϕ-recurrent and β-Kenmotsu
manifold, Publ. De L’ Inst. Math., (2010), 89(103), 77-88.
M.D. Siddiqi and U.C. De: Relativistic perfect fluid spacetimes and Ricci–Yamabe
solitons, Letters in Mathematical Physics, 112(1), (2022), DOI: 10.1007/s11005-
-01493-z.
A. Singh, R.K. Pandey, A. Prakash and K. Sachin: On a Pseudo Projective
ϕ- Recurrent Sasakian Manifolds, Journal of mathematics and computer science,
, (2015), 309–314.
Venkatesha, C.S. Bagewadi and K.T. Pradeep Kumar: Some Results on
Lorentzian Para-Sasakian Manifolds, International Scholarly Research Network
ISRN Geometry (2011), Doi: 10.5402/2011/161523.
K. Yano and S. Sawaki: Riemannian manifolds admitting a conformal transformation
group, Journal of Differential Geometry, 2, (1968), 161–184.
A. Yıldız and U.C. De: On a type of Kenmotsu manifolds, Differential Geometry—
Dynamical Systems, 12 (2010), 289-298.
DOI: https://doi.org/10.22190/FUMI220801031P
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)