LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE LORENTZIAN PARA-SASAKIAN STATISTICAL MANIFOLD

Mobin Ahmad, Mahtab Alam

DOI Number
https://doi.org/10.22190/FUMI220908045A
First page
697
Last page
711

Abstract


In this paper, we introduce an indefinite LP-Sasakian statistical manifold and study lightlike submanifold of an indefinite LP-Sasakian statistical manifold. We also introduce some relations among induced geometrical objects with respect to dual connections in a lightlike submanifold of an indefinite LP-Sasakian statistical  manifold. One example related to this concept is also presented. Finally, we show that an invariant lightlike submanifold of an indefinite LP-Sasakian  statistical manifold is an indefinite LP-Sasakian statistical manifold.

 


Keywords

LP-Sasakian manifold, Lightlike submanifold, Statistical manifold

Full Text:

PDF

References


S. Amari, Differential Geometry Methods in statistics, in: Lecture Notes in Statistics, vol.28, Springer, New York, (1985).

S. Amari and H. Nagaoka., Methods of information geometry. Transl. Math. Monogr, Amer. Math. Soc. 191, (2000).

M. E. Aydin, A. Mihai and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat, 29 (3) 465-476, (2015).

M. Balgeshir, On submanifolds of Sasakian statistical manifolds

doi:10.5269/bspm.42402, (2018)

B. Laha and B. Das, A. Bhattacharya, Contact CR-submanifolds of an indefinite Lorentzian para-Sasakian manifold, Acta Univ. Sapientiate, Mathematica, 157-168, (2013).

K. Matsumoto, On Lorentzian para-contact manifolds. Bull. Yamagata univ, 151-156, (1989).

K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-sasakian manifold, 189-197, (1992).

K. Takano, Statistical manifolds with almost contact structures and its statistical submersions, J. Geom., 171-187, (2006).

O. Bahadir, On lightlike geometry of indefinite Sasakian statistical manifold AIMS Mathematics. 6(11):12845-12862, (2021).

O. Bahadir and M. M. Tripathi, Geometry of lightlike hypersurfaces of a statistical manifold, http://arxiv.org/abs/1901.09251, (2019).

O. Bahadir, Lorentzian para-sasakian manifolds with quarter-symmetric non metric connection. Journal of Dynamical Systems and Geometric Theories, 17-33, (2016).

B. Bartlett, $A^ast$ "generative" model for computing electromagnetic field solutions http://cs229.stanford.edu/proj2018/report/233.pdf, 2018.

J. K. Beem, P. E. Ehrlich, K. L. Easely, Global Lorentzian Geometry, 2Eds., Newyork: CRC Press, 1996.

K. L. Duggal, Foliations of Lightlike hypersurfaces and their physical interpretation, Open math, 1789-1800, 2012.

Gucht, J.V.D., Davelaar, J., Hendriks, L., Porth, O., Olivares, H., Mizuno, Y., Fromm, M. C., Falcke, H.: Deep Horizon; a machine learning network that recovers accreting black hole parameters, Astronomy-Astrophysics Manuscript no. main, (2019).

Effron, B.: Defining the curvature of a statistical problem (with applications to second order efficiency), Ann. Statist, no. 6, 1189-1242 (1975).

K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its Applications, 364. Kluwer Academic Publishers Group, Dordrecht, (1996).

C. Yildrim, B. Sahin, Traversal lightlike submanifolds of indefinite Sasakian manifolds, Turk. J. Math, 561-583, (2010).

B. Sahin, Screen traversal lightlike submanifolds of indefinite Kaehlar manifolds, Chaos, Solitons Fractals, Elsevier, 1439-1448, (2008).

I. Mihai, R. Rosca, On Lorentzian Para-Sasakian Manifolds, Classical Analysis, World Scientific Publi., 155-169, (1989).

H. Furuhuta, Hypersurfaces in statistical manifolds. Differential Geom. Appl. 27, no. 3, 420-429, (2009).

P.W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Statist. Math. 41 (3) 429-450, (1989).

U. C. Dey, Adnan Al-Aqeel and A. A. Shaikh, Submanifolds of a Lorentzian Para-Sasakian manifolds, Bull. Malays. Math. Sci. Soc. (2) 28(2), 223-227, (2005).

B. Prasad, Semi-Invariants of a Lorentzian Para-Sasakian manifold, Gamit, J. Bangladesh Math. Soc., 71-76, (1993).

M. Ahmad, A. Haseeb, J.B. Jun, M.H. Shahid, CR-Submanifolds and CR-Products of a Lorentzian Para-Sasakian manifold endowed with a quarter symmetric semi-metric connection, Afr. Mat., 1113-1124, (2014).

M. Ahmad, J. P. Ojha, CR-Submanifolds of an LP-Sasakian manifold with canonical semi-metric connection, Int. J. Contemp. Math. Sci., 5(3), 1637-1644, (2010).

L. S. Das, M. Ahmad, CR-Submanifolds of an LP-Sasakian manifold with quarter-symmetric non-metric connection, Math. Sci. Res. J. 13(7), 161-169, (2009).

S. K. Hui, S. Uddin, C. Ozel, A. Mustafa, Warped product submanifolds of LP-Sasakian manifolds, Discrete Dynamics in nature and society, Article ID 868549, 11 pages, (2012).




DOI: https://doi.org/10.22190/FUMI220908045A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)