ON ESTIMATES FOR THE CANONICAL LINEAR FOURIER-BESSEL TRANSFORM IN THE SPACE Lp (R+; x2+1dx) (1 < p 2)
Abstract
Keywords
Full Text:
PDFReferences
bibitem[1]{a1}
V. A. Abilov and F. V. Abilova, emph{Approximation of Functions by
Fourier-Bessel Sums}, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 3-9 (2001).
bibitem[2]{a2} %2
V.A.Abilov, F.V.Abilova, and M.K.Kerimov, emph{Some Remarks Concerning the
Fourier Transform in the Space $mathrm{L}_{2}(mathbb{R})$} Zh. Vychisl.
Mat. Mat. Fiz. 48, 939-945 (2008) [Comput. Math. Math. Phys. 48, 885-891].
bibitem[3]{a3}
V.A.Abilov, F.V.Abilova, and M.K.Kerimov, emph{Some Remarks Concerning the
Fourier Transform in the Space $mathrm{L}_{2}(mathbb{R}^{n})$}, Zhurnal Vychislitel'noi Matematiki iMatematicheskoi Fiziki, 2008, Vol. 48 No. 12, pp. 2113-2120.
bibitem[4]{a4}
V.A.Abilov, F.V.Abilova, and M.K.Kerimov, emph{On estimates for the Fourier-Bessel integral transform in the Space $mathrm{L}_{2}(mathbb{R}^{+})$}, 2009, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2009, Vol. 49, No. 7,
pp. $1158-1166$.
bibitem[5]{a5} %2
H. Lahlali, R. Daher and M. El Hamma, emph{Growth properties for the Bessel transform in the Space $mathrm{L}_{p,alpha}(mathbb{R})$} International Journal of Advances in Mathematics Vol.1, Issue 1 textbf{(2014)} 25-29.
bibitem[6]{a6} %1
L. Dhaoudi, J. Sahbani and A. Fitouhi, emph{Harmonic analysis associted to the canonical Fourier Bessel transform}, Integral transforms and special functions, DOI: 10.1080/10652469.textbf{2020}.1823977.
bibitem[7]{a7} %1
R. Daher and M. El Hamma, emph{On Estimates for the Fourier-Bessel transform in the space $L_{p,alpha}(mathbb{R^{+}})$}. Thai Journal of Mathematics Volume 11 textbf{(2013)} Number 3: 697-702.
bibitem[8]{a8} %1
R. Daher, M. El Hamma and A. El Houasni emph{Titchmarsh's theorem for the Fourier-Bessel transform}. Matematika,textbf{ 2012}, Vol. 28, Number 2, 127-131.
bibitem[9]{a9} %1
S.M. Nikol'skii, Aproximation of Functions of Several Variables and Embed-
ding Theorems, (in Russian), Nauka, Moscow, 1977.
bibitem[10]{a10} %1
S. Ghazouni and J. Sahbani, emph{Generalized translation operator and the heat equation for the canonical Fourier Bessel transform}, arXiv: 2104.05587v1 [math. AP] 12 Aprtextbf{ 2021}.
bibitem[11]{a11} %5
E. C. Titchmarsh, emph{Introduction to the theory of Fourier Integrals}, Oxford University Press, Amen House, London, E. C. 4, 1948.
DOI: https://doi.org/10.22190/FUMI220912033A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)