FURTHER BEREZIN NUMBER INEQUALITIES OF OPERATOR MATRICES
Abstract
In this paper, we have some inequalities for the Berezin number of operator matrices using the convex functions. Also, we obtain some upper bounds for the Berezin number of operator matrices. These results improve some earlier related Berezin number inequalities.
Keywords
Full Text:
PDFReferences
bibitem {Abu}A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for
$ntimes n$ operator matrices, textit{Linear Algebra Appl.} textbf{468}
(2015) 18-26.
bibitem {AL}M. Al-Dolat, I. Jaradat, B. Al-Husban, A novel numerical radius
upper bounds for $2times2$ operator matrices, textit{Linear Multilinear
Algebra} textbf{70}(6)(2022) 1173-1184.
bibitem {Bak01}M. Bakherad, M. Hajmohamadi, R. Lashkaripour, S. Sahoo, Some
extensions of Berezin number inequalities on operators, textit{Rocky Mountain
J. Math}, textbf{51}(6)(2021) 1941-1951
bibitem {Bak1}M. Bakherad, R. Lashkaripour, M. Hajmohamadi, U. Yamanci,
Complete refinements of the Berezin number inequalities, textit{J. Math.
Inequal.} textbf{4}(13)(2019) 1117-1128.
bibitem {Bak2}M. Bakherad, M.T. Garayev, Berezin number inequalities for
operators, textit{Concr. Oper.} textbf{6}(2019) 33-43.
bibitem {Bak3}M. Bakherad, K. Shebrawi, Upper bounds for numerical radius
inequalities involving off-diagonal operator matrices, textit{Ann. Funct.
Anal.} textbf{9}(3)(2018) 297-309.
bibitem {Bak4}M. Bakherad, Some Berezin number inequalities for operator
matrices, textit{Czechoslovak Math. J.} textbf{68}(4)(2018) 997-1009.
bibitem {BA}W. Bani-Domi, F. Kittaneh, Norm and numerical radius inequalities
for Hilbert space operators, textit{Linear Multilinear Algebra}
textbf{69}(5)(2021) 934-945.
bibitem {ber1}F.A. Berezin, Covariant and contravariant symbols for
operators, textit{Math. USSR-Izv.} textbf{6} (1972) 1117-1151.
bibitem {BH}P. Bhunia, K. Paul, A. Sen, Inequalities involving Berezin norm
and Berezin number, textit{Complex Anal. Oper. Theory} textbf{17}(7)(2023) 1-17.
bibitem {BU}M.L. Buzano, Generalizzazione della diseguaglianza di
Cauchy-Schwarz, (Italian), textit{Rend. Sem. Mat. Univ.e Politech. Torino}
textbf{31} (1974) 405-409.
bibitem {cas}L.P. Castro, S. Saitoh, Numerical solutions of linear singular
integral equations by means of Tikhonov regularization and reproducing
kernels, textit{Houston J. Math.} textbf{38}(4)(2012) 1261-1276.
bibitem {cas2}L.P. Castro, S. Saitoh, Y. Sawano, A.M. Simoes, General
inhomogeneous discrete linear partial differential equations with constant
coefficients on the whole spaces, textit{Complex Anal. Oper. Theory}
textbf{6}(1)(2012) 307-324.
bibitem {D}S.S. Dragomir, Power inequalities for the numerical radius of a
product of two operators in Hilbert spaces, textit{Sarajevo J. Math.}
textbf{5}(2009) 269-278.
bibitem {G}K.E. Gustafson, D.K.M. Rao, Numerical range, New York: Springer; 1997.
bibitem {HA}M. Hajmohamadi, R. Lashkaripour, M. Bakherad, Improvements of
Berezin number inequalities, textit{Linear Multilinear Algebra}
textbf{68}(6)(2020) 1218-1229.
bibitem {H}J.C. Hou, H.K. Du, Norm inequalities of positive operator
matrices, textit{Integr. Equ. Oper. Theory} textbf{22}(1995) 281-294.
bibitem {Kar0}M.T. Karaev, Berezin symbol and invertibility of operators on
the functional Hilbert spaces, textit{J. Funct. Anal.} textbf{238} (2006) 181-192.
bibitem {Kar}M.T. Karaev, Reproducing kernels and Berezin symbols techniques
in various questions of operator theory, textit{Complex Anal. Oper. Theory}
textbf{7} (2013) 983-1018.
bibitem {K0}F. Kittaneh, Notes on some inequalities for Hilbert space
operators, textit{Publ. RIMS Kyoto Univ.} textbf{24}(1988) 283-293.
bibitem {K}F. Kittaneh, Numerical radius inequalities for Hilbert space
operators., textit{Stud. Math.} textbf{168}(2005) 73-80.
bibitem {K1}F. Kittaneh, Spectral radius inequalities for Hilbert space
operators, Proc. Amer. Math. Soc., 134 (2006), 385-390.
bibitem {M}B. Mond, J. Pecaric, On Jensen's inequality for operator convex
functions, textit{Houston J. Math.}, textbf{21}(1995) 739-753.
bibitem {fil}H. Moradi, M. Sababheh, New estimates for the numerical radius,
Filomat, 35(14)(2021), 4957-4962.
bibitem {MO}H.R. Moradi, S. Furuichi, F.C. Mitroi, R. Naseri, An extension of
Jensen's operator inequality and its application to Young inequality,
textit{Rev. R. Acad. Cienc. Exact. Fs. Nat. Ser. A Mat.} textbf{113}(2019) 605-614.
bibitem {P}V.I. Paulsen, M. Raghupati, An introduction to the theory of
reproducing kernel Hilbert spaces, Cambridge Univ. Press, 2016.
bibitem {sss}S. Sahoo, N. Das, N.C. Rout, On Berezin number inequalities for
operator matrices, textit{Acta. Math. Sin.-English Ser.} textbf{37}(2021) 873-892.
bibitem {SA}S. Sahoo, N.C. Rout, New upper bounds for the numerical radius of
operators on Hilbert spaces, textit{Adv. Oper. Theory} textbf{7}(50)(2022) 1-20.
bibitem {S}K. Shebrawi, Numerical radius inequalities for certain $2times2$
operator matrices II. textit{Linear Algebra Appl.} textbf{523}(2017) 1-12.
bibitem {UM}U. Yamanci, M.T. Garayev, Some results related to the Berezin
number inequalities, textit{Turkish J. Math.} textbf{43}(4)(2019), 1940-1952.
bibitem {GU}U. Yamanci, M. Guesba, Refinements of some Berezin number
inequalities and related questions, textit{J. Anal.} textbf{31}(1)(2023) 539-549.
bibitem {zhu}K. Zhu, Operator theory in function spaces, Second edition.
Mathematical Surveys and Monographs, 138. American Mathematical Society,
Providence R.I., 2007.
DOI: https://doi.org/10.22190/FUMI221014034G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)