MANNHEIM PARTNER TRAJECTORIES RELATED TO PAFORS
Abstract
Keywords
Full Text:
PDFReferences
R. L. Bishop: There is more than one way to frame a curve. Amer. Math. Monthly 82 (1975), 246-251.
R. Blum: A remarkable class of Mannheim-curves. Can. Math. Bull. 9 (1966), 223-228.
G. Darboux: Lecons Sur La Thorie Gnrale Des Surfaces I-II-III-IV. Gauthier-Villars, Paris, 1896.
M. Dede: A new representation of tubular surfaces. Houston J. Math. 45 (2019), 707-720.
M. Dede, C. Ekici and H. Tozak: Directional tubular surfaces. Int. J. Algebra 9 (2015), 527-535.
F. Dogan ˘ and Y. Yaylı: Tubes with Darboux frame. Int. J. Contemp. Math. Sci. 7 (2012), 751-758.
M. A. Gung ¨ or ¨ and M. Tosun: A study on dual Mannheim partner curves. Int. Math. Forum. 5 (2010), 2319-2330.
N. E. Gurb ¨ uz ¨ : The evolution of an electric field with respect to the type-1 PAF and the PAFORS frames in R3 1. Optik 250 (2022), 168285.
M. Kazaz, H. H. Ugurlu, M. ˘ Onder ¨ and T. Kahraman: Mannheim partner Dcurves in the Euclidean 3-Space E3. New Trend. Math. Sci. 3 (2015), 24-35.
O. Keskin and Y. Yaylı: An application of N-Bishop frame to spherical images for direction curves. Int. J. Geom. Methods Mod. Phys. 14 (2017), 1750162.
T. Korpnar ¨ and Y. Unl ¨ ut ¨ urk ¨ : An approach to energy and elastic for curves with extended Darboux frame in Minkowski space. AIMS Mathematics 5 (2020), 1025-1034.
H. Liu and F. Wang: Mannheim partner curves in 3-space. Journal of Geometry 88 (2008), 120-126.
A. Mannheim: Paris C.R. 86 (1878), 1254-1256.
M. Masal and A. Z. Azak: Mannheim B-curves in the Euclidean 3-space. Kuwait J. Sci. 44 (2017), 36-41.
B. O'Neil: Elemantary Differential Geometry. Academic Press, New York, 1966.
K. Orbay, E. Kasap and I. Aydemir: Mannheim offsets of ruled surfaces. Mathematical Problems in Engineering 2009 (2009), 160917.
K. E. Ozen ¨ and M. Tosun: A new moving frame for trajectories on regular surfaces. Ikonion Journal of Mathematics 3 (2021), 20-34.
K. E. Ozen ¨ and M. Tosun: A new moving frame for trajectories with non-vanishing angular momentum. J. Math. Sci. Model. 4 (2021), 7-18.
K. E. Ozen ¨ and M. Tosun: Some characterizations on geodesic, asymptotic and slant helical trajectories according to PAFORS. Maltepe Journal of Mathematics 3 (2021), 74-90.
K. E. Ozen, M. Tosun ¨ and M. Akyigit ˘ : Siaccis theorem according to Darboux frame. An. S¸t. Univ. Ovidius Constant¸a 25 (2017), 155-165.
S. Ozkaldı, K. ¨ Ilarslan _ and Y. Yaylı: On Mannheim partner curve in dual space. An. S¸t. Univ. Ovidius Constant¸a 17 (2009), 131-142.
S. P. Radzevich: Geometry of Surfaces: A Practical Guide for Mechanical Engineers. Wiley, 2013.
P. D. Scofield: Curves of constant precession. Amer. Math. Monthly 102 (1995), 531-537.
T. Shifrin: Differential Geometry: A First Course in Curves and Surfaces. University of Georgia, Preliminary Version, 2008.
M. A. Soliman, N. H. Abdel-All, R. A. Hussien and T. Youssef: Evolution of space curves using type-3 Bishop frame. Caspian J. Math. Sci. 8 (2019), 58-73.
G. Y. S¸enturk ¨ and S. Yuce ¨ : Bertrand offsets of ruled surfaces with Darboux frame. Results in Mathematics 72 (2017), 1151-1159.
Y. Unl ¨ ut ¨ urk, M. C¸ imdiker ¨ and C. Ekici: Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space. Communication in Mathematical Modeling and Applications 1 (2016), 26-43.
F. Wang and H. Liu: Mannheim partner curves in 3-Euclidean space. Mathematics in Practice and Theory 37 (2007), 141-143.
S. Yılmaz and M. Turgut: A new version of Bishop frame and an application to spherical images. J. Math. Anal. Appl. 371 (2010), 764-776.
DOI: https://doi.org/10.22190/FUMI221017016I
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)