COMMON FIXED POINT RESULTS USING $(E.A)$ AND $CLR$-PROPERTIES IN $S$-METRIC SPACES

Gurucharan Singh Saluja

DOI Number
https://doi.org/10.22190/FUMI221213012S
First page
179
Last page
198

Abstract


In this paper, we prove some common Fxed point results for two pairs of weakly compatible mappings satisfying  $(E.A)$ property and $CLR$-property in the framework of S-metric spaces and provide some examples to support the outcomes. We also prove well-posedness of a Fxed point problem. Our Fndings generalize and extend a number of previously published Fndings.


Keywords

Common fixed point, S-metric space, (E:A)-property, CLR-property, weakly compatible condition.

Full Text:

PDF

References


bibitem{AR09} M. Abbas and B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity generalized metric spaces, Appl. Math. Computation {bf 215} (2009), 262-269.

bibitem{AM02} M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. {bf 270} (2002), 181-188.

bibitem{B89} I. A. Bakhtin, The contraction mapping principle in

almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk {bf

} (1989), 26-37.

bibitem{B22} S. Banach, Sur les operation dans les ensembles

abstraits et leur application aux equation integrals, Fund. Math.

{bf 3}(1922), 133-181.

bibitem{D92} B. C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc. {bf 84} (1992), 329-336.

bibitem{G63} S. G$ddot{a}$hler, 2-metrische R$ddot{a}$ume und iher topoloische struktur, Math. Nachr. {bf 26} (1963), 115-148.

bibitem{G13} A. Gupta, Cyclic contraction on $S$-metric space, Int. J. Anal. Appl. {bf 3(2)} (2013), 119-130.

bibitem{HLD15} N. T. Hieu, N. T. Ly and N. V. Dung, A generalization of Ciric quasi-contractions for maps on $S$-metric spaces, Thai J. Math. {bf 13(2)} (2015), 369-380.

bibitem{IPC12} M. Imdad, B. D. Pant and S. Chauhan, Fixed point theorems in Menger spaces using $(CLR_{RT})$ property and applications, J. Nonlinear Anal. Optim. {bf 3(2)} (2012), 225-237.

bibitem{J86} G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. {bf 9} (1986), 771-779.

bibitem{J96} G. Jungck, Common fixed points for noncontinuous, nonself maps on nonnumetric spaces, Far East J. Math. Sci. {bf 4(2)} (1996), 195-215.

bibitem{KSGR16} J. K. Kim, S. Sedghi, A. Gholidahneh and M. M. Rezaee, Fixed point theorems in $S$-metric spaces, East Asian Math. J. {bf 32(5)} (2016), 677-684.

bibitem{MS06} Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. {bf 7} (2006), 289-297.

bibitem{OT17b} N. Y. $ddot{O}$zg$ddot{u}$r and N. Tas, Some new contractive mappings on $S$-metric spaces and their relationships with the mapping ${bf (S25)}$, Math. Sci. {bf 11(7)} (2017), 7-16.

bibitem{RZ01} S. Reich and A. J. Zaslavski, Well posedness of fixed point problem, Far East J. Math. special volume part III (2001), 393-401.

bibitem{SSA12} S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Mat. Vesnik {bf 64(3)} (2012), 258-266.

bibitem{SD14} S. Sedghi and N. V. Dung, Fixed point theorems on $S$-metric spaces, Mat. Vesnik {bf 66(1)} (2014), 113-124.

bibitem{SRDR16} S. Sedghi, M. M. Rezaee, T. Dosenovic and S. Radenovic, Common fixed point theorems for contractive mappings satisfying $Phi$-maps in $S$-metric spaces, Acta Univ. Sapientiae Math. {bf 8(2)} (2016), 298-311.

bibitem{SSSD18} S. Sedghi, N. Shobkolaei, M. Shahraki and T. Dosenovic, Common fixed point of four maps in $S$-metric space, Math. Sci. {bf 12} (2018), 137-143.




DOI: https://doi.org/10.22190/FUMI221213012S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)