HYPERBOLIC KENMOTSU MANIFOLD ADMITTING A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION

Abhishek Singh, Lovejoy S. Das, Pankaj Pankaj, Shraddha Patel

DOI Number
https://doi.org/10.22190/FUMI230207008S
First page
123
Last page
139

Abstract


In this work, we study a new type of semi-symmetric non-metric connection on hyperbolic Kenmotsu manifold. Some Riemannian curvature’s characteristics on hyperbolic Kenmotsu manifold are investigated. The properties of semi-symmetric, locally ϕ-symmetric and Ricci semi-symmetric hyperbolic Kenmotsu manifold endowed with a new type of semi-symmetric nonmetric connection are evaluated. A semi-symmetric and Ricci semi-symmetric hyperbolic Kenmotsu manifold with a semi-symmetric non-metric connection is also demonstrated, the Ricci soliton of data (g1,ξ,λ) is shrinking. Finally, we demonstrate our results with a 3-dimensional example.

Keywords

Semi-symmetric non-metric, hyperbolic Kenmotsu manifold, Ricci soliton, Einstein manifold, Ricci semi-symmetric.

Full Text:

PDF

References


M. Ahmad and K. Ali: CR-submanifolds of a nearly hyperbolic Kenmotsu manifold admitting a quarter-symmetric non-metric connection, J. Math. Comput. Sci. 3(2013), no. 3, 905-917.

N. S. Agashe and M. R. Chafle: A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23(1992), 399-409.

N. S. Agashe and M. R. Chafle: On submanifolds of a Riemannian manifold with semi-symmetric non-metric connection, Tensor N. S., 55(2)(1994), 120-130.

A. Barman: On P-Sasakian manifolds admitting semi-symmetric metric connection, Publication de L’ inst. Math., 95(2014), 239-247.

C. S. Bagewadi and G. Ingalahalli: Ricci Solitons in Lorentzian α-Sasakian manifolds, Acta Math. Acad. P. N., 28(2012), 59-68.

E. Bartolotti: Sulla geometria della variata a connection affine, Ann. diMat. 4(8)(1930), 53-101.

L. Bhatt and K. K. Dube: CR-submanifolds of trans-hyperbolic Sasakian manifold, Acta Ciencialndica, 31(2003), 91-96.

B. B. Chaturvedi and P. N. Pandey: Semi-symmetric non-metric connection on a ¨Kahler manifold, Differential Geometry-Dynamical Systems, 10(2008), 86-90.

S. K. Chaubey and A. Yildiz: Riemannian manifold admitting a new type semisymmetric non-metric connection, Turkish Journal of Mathematics, 43(2019), 1887-1904.

S. K. Chaubey: On semi-symmetric non-metric connection, Prog. of Math, 41-42(2007), 11-20.

S. K. Chaubey and A. C. Pandey: Some properties of a semi-symmetric non-metric connection on a Sasakian manifold, Int. J. Contemp. Math. Sciences, 8(2013), no. 16, 789-799.

U. C. De and D. Kamilya: Hypersurfaces of a Riemannian manifold with semisymmetric non-metric connection, J. Indian Inst. Sci., 75 (1995), 707-710.

U. C. De and J. Sengupta: On a type of semi-symmetric non-metric connection, Bull. Cal. Math. Soc., 92(2000), no. 5, 375-384.

L. Das, M. Ahmad and A. Haseeb: On semi-symmetric submanifolds of a nearly Sasakian manifold admitting a semi symmetric non-metric connection, Journal of Applied Analysis, USA, 17(2011), pp.1-12.

L. Das and M. Ahmad: CR-submanifolds of a Lorenzian Para Sasakian Manifold enbowed with a quarter symmetric non-metric connection, Math Science Research Journal, 13(7)(2009), 161-169.

A. Friedmann and A. Schouten: ¨U ber die Geometric der halbsymmetrischen ¨Ubertragung, Math. Zeitschr., 21(1924), 211-223.

H. A. Hayden: Subspaces of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50.

L. K. Pandey and R. H. Ojha: Semi-symmetric metric and non-metric connections in Lorentzian paracontact manifold, Bull. Cal. Math. Soc., 93(2001), no. 6, 497-504.

Pankaj, S. K. Chaubey and R. Prasad: Sasakian manifolds with admitting a nonsymmetric non-metric connection, Palestine Journal of Mathematics, 9(2)(2020), 698-710.

Pankaj, S. K. Chaubey and G. Ayar: Yamabe and gradient Yamabe solitons on 3-dimensional hyperbolic Kenmotsu manofolds, Balkan Society of Geometers, 23(2021), 175-188.

J. Sengupta, U. C. De and T. Q. Binh: On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 31(2000), no.(1-2), 1659-1670.

M. M. Tripathi and N. Kakkar: On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Cal. Math. Soc., 16(2001), no. 4, 323-330.

M. D. Upadhyay and K. K. Dube: Almost contact hyperbolic (ϕ, ξ, η, g)-structure, Acta. Math. Acad. Scient. Hung. Tomus, 28(1976), 1-4.




DOI: https://doi.org/10.22190/FUMI230207008S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)