SOME REMARKS ON RICCI{GOLAB CONNECTIONS

Adara Monica Blaga, Iulia -Elena Hirica

DOI Number
https://doi.org/10.22190/FUMI230305039B
First page
621
Last page
634

Abstract


We consider the divergence and Laplace operators defned by the Ricci-Golab connection and establish some integral properties. We provide certain results on the deformation algebras associated to pairs of Ricci-Golab connections. Almost 1-principal Golab connections are also investigated.


Keywords

Laplace operator, Ricci-Golab connection

Full Text:

PDF

References


A. Barman,

{On a type of quarter-symmetric non-recurrent metric connection on a P-Sasakian manifold.}

Publ. l'Institut Math. N.S. {110}(124), 91--102 (2021)

E. O. Canfes, I. Gul,

{Weyl manifold with a Ricci quarter-symmetric connection.}

Iran. J. Sci. Technol. Trans. Sci. {40}, 171--175 (2016)

S. K. Chaubey, J. W. Lee, S.K. Yadav,

{Riemannian manifolds with a semi-symmetric metric P-connection.}

J. Korean Math. Soc. {56}(4), 1113--1129 (2019)

S. Golab,

{On semi-symmetric and quarter-symmetric connections.}

Tensor. N.S. {29}(3), 249--254 (1975)

Y. Han, T. Ho, P. Zhao,

{Some invariants of quarter-symmetric metric connections under the projective transformation.}

Filomat. {27}(4), 679--691 (2013)

I. E. Hiricu a,

{On some Golab connections.}

Demonstratio Mathematica. {XXXIX}(4), 919--926 (2006)

I. E. Hiricu a, L. Nicolescu,

{On quarter-symmetric metric connections on pseudo-Riemannian manifolds.}

Balkan J. Geom. Appl. {16}(1), 56--65 (2011)

L. Nicolescu,

{Sur les courbes presque $m$-principales associees `{a} un champ tensoriel du type (1,2).}

An. Univ. Bucurec sti, Matematica. {LIII}(1), 93--104 (2004)

M. Obata,

{Certain conditions for a Riemannian manifold to be isometric to the sphere.}

J. Math. Soc. Japan. {14}, 333--340 (1962)

P. Petersen,

Riemannian Geometry, Graduate Texts in Mathematics {171}, (2006)

M. Z. Petrovic, M. S. Stankovic,

{A note on F-planar mappings of manifolds with non-symmetric linear connection.}

Int. J. Geom. Meth. Modern Phys. {16}(5) (2019)

K. T. Pradeep Kumar, B. M. Roopa, K. H. Arun Kumar,

{On $W_0$ and $W_2$ $varphi $-symmetric contact manifold admitting quarter-symmetric metric connection.}

J. Phys. Conf. Ser., 2070--2075 (2021)

M. Reuter, S. Biasotti, D. Georgi, G. Patane, M. Spagnuolo,

{Discrete Laplace-Beltrami operators for shape analysis and segmentation.}

Computers and Graphics. {33}(3), 381--390 (2009)

I. Suhendro,

{A New Semi-symmetric unified field theory of the classical fields of gravity and electromagnetism.}

Progress in Physics. {4}, 47--62 (2007)

W. Tang, J. Yong, T. Ho, G. He, P. Zhao,

{Geometries of manifolds equipped with a Ricci (projection-Ricci) quarter-symmetric connection.}

Filomat. {33}(16), 5237--5248 (2019)

H. Volkmer,

{The Laplace-Beltrami operator on the embedded torus.}

Journal of Differential Equations. {271}, 821--848 (2021)

K. Yano,

{On semi-symmetric metric connection.}

Rev. Roum. Math. Pures Appl. {15}, 1570--1586 (1970)

K. Yano, J. Imai,

{Quarter-symmetric connection and their curvature tensors.}

Tensor. N. S. {38}, 13--18 (1982)

P. Zhao, T. Ho, A. J. Hyon,

{Geometries for a mutual connection of semi-symmetric metric recurrent connections.}

Filomat. {34}(13), 4367--4374 (2020)

P. Zhao, H. Song, X. Yang,

{Some invariant properties of semi-symmetric recurrent connections and curvature tensor expression.}

Chin. Quart. J. Math. {14}(4), 355--361 (2004)




DOI: https://doi.org/10.22190/FUMI230305039B

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)