SOME REMARKS ON RICCI{GOLAB CONNECTIONS
Abstract
We consider the divergence and Laplace operators defned by the Ricci-Golab connection and establish some integral properties. We provide certain results on the deformation algebras associated to pairs of Ricci-Golab connections. Almost 1-principal Golab connections are also investigated.
Keywords
Full Text:
PDFReferences
A. Barman,
{On a type of quarter-symmetric non-recurrent metric connection on a P-Sasakian manifold.}
Publ. l'Institut Math. N.S. {110}(124), 91--102 (2021)
E. O. Canfes, I. Gul,
{Weyl manifold with a Ricci quarter-symmetric connection.}
Iran. J. Sci. Technol. Trans. Sci. {40}, 171--175 (2016)
S. K. Chaubey, J. W. Lee, S.K. Yadav,
{Riemannian manifolds with a semi-symmetric metric P-connection.}
J. Korean Math. Soc. {56}(4), 1113--1129 (2019)
S. Golab,
{On semi-symmetric and quarter-symmetric connections.}
Tensor. N.S. {29}(3), 249--254 (1975)
Y. Han, T. Ho, P. Zhao,
{Some invariants of quarter-symmetric metric connections under the projective transformation.}
Filomat. {27}(4), 679--691 (2013)
I. E. Hiricu a,
{On some Golab connections.}
Demonstratio Mathematica. {XXXIX}(4), 919--926 (2006)
I. E. Hiricu a, L. Nicolescu,
{On quarter-symmetric metric connections on pseudo-Riemannian manifolds.}
Balkan J. Geom. Appl. {16}(1), 56--65 (2011)
L. Nicolescu,
{Sur les courbes presque $m$-principales associees `{a} un champ tensoriel du type (1,2).}
An. Univ. Bucurec sti, Matematica. {LIII}(1), 93--104 (2004)
M. Obata,
{Certain conditions for a Riemannian manifold to be isometric to the sphere.}
J. Math. Soc. Japan. {14}, 333--340 (1962)
P. Petersen,
Riemannian Geometry, Graduate Texts in Mathematics {171}, (2006)
M. Z. Petrovic, M. S. Stankovic,
{A note on F-planar mappings of manifolds with non-symmetric linear connection.}
Int. J. Geom. Meth. Modern Phys. {16}(5) (2019)
K. T. Pradeep Kumar, B. M. Roopa, K. H. Arun Kumar,
{On $W_0$ and $W_2$ $varphi $-symmetric contact manifold admitting quarter-symmetric metric connection.}
J. Phys. Conf. Ser., 2070--2075 (2021)
M. Reuter, S. Biasotti, D. Georgi, G. Patane, M. Spagnuolo,
{Discrete Laplace-Beltrami operators for shape analysis and segmentation.}
Computers and Graphics. {33}(3), 381--390 (2009)
I. Suhendro,
{A New Semi-symmetric unified field theory of the classical fields of gravity and electromagnetism.}
Progress in Physics. {4}, 47--62 (2007)
W. Tang, J. Yong, T. Ho, G. He, P. Zhao,
{Geometries of manifolds equipped with a Ricci (projection-Ricci) quarter-symmetric connection.}
Filomat. {33}(16), 5237--5248 (2019)
H. Volkmer,
{The Laplace-Beltrami operator on the embedded torus.}
Journal of Differential Equations. {271}, 821--848 (2021)
K. Yano,
{On semi-symmetric metric connection.}
Rev. Roum. Math. Pures Appl. {15}, 1570--1586 (1970)
K. Yano, J. Imai,
{Quarter-symmetric connection and their curvature tensors.}
Tensor. N. S. {38}, 13--18 (1982)
P. Zhao, T. Ho, A. J. Hyon,
{Geometries for a mutual connection of semi-symmetric metric recurrent connections.}
Filomat. {34}(13), 4367--4374 (2020)
P. Zhao, H. Song, X. Yang,
{Some invariant properties of semi-symmetric recurrent connections and curvature tensor expression.}
Chin. Quart. J. Math. {14}(4), 355--361 (2004)
DOI: https://doi.org/10.22190/FUMI230305039B
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)