FOURIER-BESSEL LIPSCHITZ FUNCTIONS IN THE SPACE LP

Radouan Daher, Salah El Ouadih, Mohamed El Hamma

DOI Number
-
First page
363
Last page
372

Abstract


In this paper, we obtain an analog of Youniss Theorem 5.2 in [5] for
the generalized Fourier-Bessel transform on the real line for functions satisfying the Fourier-Bessel Lipschitz condition in the space Lp


Keywords

Singular differential operator, Generalized Fourier-Bessel transform, Generalized translation operator

Full Text:

PDF

References


R. F. Al Subaie and M. A. Mourou, The continuous wavelet transform for a Bessel type

operator on the half line, Mathematics and Statistics 1(4): 196-203, 2013.

S.M.Nikol'skii, Aproximation of functions of several variables and embedding theorems,

(Nauka,Moscow.1977)[in Russian].

V.S.Vladimirov, Equations of mathematical physics, Marcel Dekker, New York,1971,Nauka,

Moscow,1976.

B.M.Levitan, Expansion in Fourier series and integrals over Bessel functions, Uspekhi

Math.Nauk, 6,No.2,102-143,1951.

Younis M.S. Fourier transforms of Dini-Lipschitz Functions. Int. J. Math. Math. Sci. 1986, 9

(2), 301312. doi:10.1155/S0161171286000376

R. F. Al Subaie and M. A. Mourou, Transmutation operators associated with a Bessel type

operator on the half line and certain of their applications, Tamsii. oxf. J. Inf. Math. Scien 29

(3) (2013), pp. 329-349.

A.G.Sveshnikov,A.N.Bogolyubov and V.V.Kratsov, Lectures on mathematical physics,

Nauka, Moscow,2004)[in Russian].


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)