AN APPROACH TO SEMIHYPERMODULES OVER SEMIHYPERRINGS

Madeleine Al Tahan, Bijan Davvaz

DOI Number
https://doi.org/10.22190/FUMI230331044A
First page
667
Last page
688

Abstract


In this paper, we introduce semihypermodules over semihyperrings as a generalization of semimodules over semirings. Besides studying their properties, we introduce an equivalence relation on them and use it to define factor semihypermodules. Moreover, we discuss the (semi-)isomorphism theorems for semihypermodules and present some of their interesting applications. Finally, we project our results on semihyperrings and deduce the (semi-)isomorphism theorems for semihyperrings.




Keywords

semihypermodules, semihyperrings.

Full Text:

PDF

References


R. Ameri and H. Hedayati: On k-hyperideals of semihyperrings. Journal of Discrete Mathematical Sciences and Cryptography 10(1) (2007), 41-54.

P. Corsini: Prolegomena of Hypergroup Theory. Udine, Tricesimo, Italy: Second edition, Aviani editore (1993).

P. Corsini and V. Leoreanu: Applications of Hyperstructures Theory. Advances in Mathematics, Kluwer Academic Publisher (2003).

R. Cuninghame-Green: Minimax Algebra. Ser. Lecture Notes in Economics and Mathematical Systems, Berlin, Germany: Springer Verlag 166 (1979).

B. Davvaz: Fuzzy hyperideals in ternary semihyperrings. Iranian Journal of Fuzzy Systems 6(4) (2009), 21-36.

B. Davvaz: Polygroup Theory and Related Systems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2013).

B. Davvaz: Semihypergroup Theory. Elsevier/Academic Press, London (2016).

B. Davvaz and I. Cristea: Fuzzy Algebraic Hyperstructures. Studies in Fuzziness and Soft Computing 321, Springer International Publishing (2015).

B. Davvaz and V. Leoreanu-Fotea: Krasner Hyperring Theory. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2024).

B. Davvaz, Subiono and M. Al-Tahan: Calculus of meet plus hyperalgebra (Tropical semihyperrings). Communication in Algebra 48(5) (2020), 2143-2159.

R. Dedikind: Uber die Theorie der ganzen algebraischen Zahlen. Supplement XI to P. G. Lejeune Dirichlet: Vorlesungen uber Zahlentheorie, 4 Aufl., Druck und Verlag, Braunschweig (1894).

J. S. Golan: Semiring and their Applications. Kluwer Academic publisher Dordrecht (1999).

M. Krasner: A class of hyperrings and hyperfields. International J. Math. and Math. Sci. 6 (1983), 307-312.

F. Marty: Sur une generalization de la notion de group. In 8th Congress Math. Scandenaves (1934), 45-49.

S. Omidi and B. Davvaz, Basic notions and properties of ordered semihyperrings. Categories and General Algebraic Structures with Applications 4(1) (2016), 43-62.

R. Rota: Multiplicative hyperrings. Rend. Mat. 2 (1982), 711-724.

H. S. Vandiver: Note on a simple type of algebra in which the cancellation law of addition does not hold. Bull. Amer. Math. Soc. 40 (1934), 916-920.

T. Vougiouklis: Hyperstructures and Their Representations. Hadronic Press Monographs (1994).

T. Vougiouklis: On the hyperstructure theory. Southeast Asian Bull. Math. 40(4) (2016), 603-620.




DOI: https://doi.org/10.22190/FUMI230331044A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)