ON THE EXISTENCE AND EXAMPLES OF HOMOGENEOUS GEODESICS IN GENERALIZED m-KROPINA SPACE
Abstract
Keywords
Full Text:
PDFReferences
V. I. Arnold: Sur la ge´ome´trie diffe´rentielle des groupes de Lie de dimension infnie et ses applications a`lhydrodynamique des fluides parfaites. Ann. Inst. Fourier (Grenoble), 16 (1960), 319–361.
M. Atashafrouz, B. Najafi and L. Pis¸coran: Left invariant (α; β)-metrics on 4-dimensional Lie groups. Facta Univ. Ser. Math. Info. 35(3) (2020), 727–740.
D. Bao, S. S. Chern and Z. Shen: An Introduction to Riemann-Finsler Geometry, GTM- 200, Springer-Verlag 2000.
S. S. Chern and Z. Shen: Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientifc Publishers, 2005.
P. Chossat, D. Lewis, J. P. Ortega and T. S. Ratiu: Bifurcation of relative equilibria in mechanical systems with symmetry. Adv. Appl. Math. 31 (2003), 10–45.
M. Crampin and T. Mestdaga: Relative equilibria of Lagrangian systems with symmetry, J. Geom. Phys. 58 (2008), 874–887.
S. Deng: Homogeneous Finsler Spaces, Springer Monographs in Mathematics, New York, 2012.
S. Deng and Z. Hou: Invariant Finsler metrics on homogeneous manifolds. J. Phys. 37 (2004) 8245–8253.
S. Deng and Z. Hou: Invariant Randers metrics on homogeneous Riemannian manifolds. J Phys. A: Math. Gen. 37 (2004), 4353–4360.
Z. Duek: Homogeneous Randers spaces admitting just two homogeneous geodesics. Archivum Mathematicum. 55(5), 281–288.
Z. Duek: The Existence of Two Homogeneous Geodesics in Finsler Geometry, Symmetry, 11 (2019),850; doi:10.3390/sym11070850.
P. Habibi: Homogeneous geodesics in Homogeneous Randers spaces - examples. Journal of Finsler Geometry and its applications. 1(1) (2020), 89–95.
M. Hosseini and H.R. Salimi Moghaddam: On the existence of homogeneous geodesic in homogeneous Kropina spaces. Bull. Iran. Math. Soc. 46 (2020), 457–469
V. V. Kajzer: Conjugate points of left invariant metrics on Lie group. Sov. Math. 34 (1990), 32–44.
K. Kaur and G. Shanker: On the geodesics of a homogeneous Finsler space with a special (α; β)-metric. J. Fins. Geo. Appl. 1(1) (2020), 26–36.
O. Kowalski: Generalized Symmetric spaces Lecture Notes in Math. Vol. 805, Springer Verlag, Berlin-Heidelberg-New York, 1980.
O. Kowalski and J. Szenthe: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata, 81 (2000), 209–214.
O. Kowalski and Z. Vla´sˇek: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debr. 62 (3-4) (2003), 437–446.
V. K. Kropina: On projective two-dimensional Finsler spaces with a special metric, Trudy Sem. Vektor. Tenzor. Anal. 11 (1961) 277–292, (in Russian).
E. A. Lacomba: Mechanical Systems with Symmetry on Homogeneous Spaces. Trans. Amer. Math. Soc. 185 (1973), 477–491.
D. Latiffi: Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007), 1421–1433.
J. P. Ortega and T. S. Ratiu: Stability of Hamiltonian relative equilibria. Nonlinearity. 12 (1999), 693–720.
G. W. Patrick: Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift. J. Nonlinear Sci. 5 (1995), 373–418.
M. Parhizkar and H. R. Salimi Moghaddam: Geodesic Vector Fields of Invariant (α; β)- Metrics on Homogeneous Spaces. Inter. Elec. Jour. Geo. 6 (2) (2013), 39–44.
S. Rani and G. Shanker: On S-curvature of homogeneous Finsler spaces with Randers changed square metric. Facta Univer. Ser. Mathe. Info. 35 (3) (2020), 673–691.
G. Z. To´th: On Lagrangian and Hamiltonian systems with homogeneous trajectories. J. Phys. A: Math. Theor. 43 (2010), 385206 (19pp).
Z. Yan and S. Deng: Existence of homogeneous geodesics on homogeneous Randers spaces. Hou. J. Math. 44 (2) (2018), 481–493.
DOI: https://doi.org/10.22190/FUMI230524020J
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)