ON GENERALIZED STATISTICAL CONVERGENCE OF ORDER alpha OF FUNCTIONS
Abstract
In this paper, we introduce the concept of generalized statistical convergence of measurable functions of order $\alpha $ for $0<\alpha \leq 1$ at $\infty $ and at a point $c\in \mathbb{R}$. In addition to this, we defined generalized strongly $p$-Ces\`{a}ro summability ($0<p<\infty $) of a locally integrable function at $\infty $ and at a point $c\in \mathbb{R}$. Using these definitions we present some basic results.
Keywords
Full Text:
PDFReferences
K. E. Akbas and M. Isik: On asymptotically λ-statistical equivalent sequences of order α in probability. Filomat, 34 (13) (2020), 4359–4365.
N. D. Aral and H. S¸eng¨ul Kandemir: I-Lacunary Statistical Convergence of order β of Difference Sequences of Fractional Order. Facta Universitatis(NIS) Ser. Math. Inform., 36 (1) (2021), 43–55.
B. T. Bilalov and S. R. Sadigova: On μ−statistical convergence. Proc. Amer. Math. Soc. 143 (9) (2015), 3869–3878.
A. Caserta, Di M. Giuseppe and L. D. R. Koˇcinac: Statistical convergence in function spaces. Abstr. Appl. Anal., 2011, Art. ID 420419, 11 pp.
M. Cinar, M. Karakas and M. Et: On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory Appl., 2013 (33) (2013), 11 pp.
R. Colak: Statistical convergence of order α, Modern Methods in Analysis and Its Applications. New Delhi, India: Anamaya Pub, 2010, 121–129.
J. S. Connor: The Statistical and strong p−Ces`aro convergence of sequences. Analysis 8 (1988), 47–63.
O. Duman and C. Orhan: μ−statistically convergent function sequences. Czechoslovak Math. J., 54 (2) (129) (2004), 413–422.
M. Et and H. S¸eng¨ul: On pointwise Lacunary Statistical Convergence of α of Sequences of Function. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 85 (2) (2015), 253–258.
M. Et, P. Baliarsingh, H. S¸eng¨ul Kandemir and M. K¨uc¸¨ukaslan: On μ−deferred statistical convergence and strongly deferred summable functions. Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 115 (1) (2021), Paper No. 34, 14 pp.
H. Fast: Sur la convergence statistique. Colloq. Math., 2 (1951), 241–244.
J. Fridy: On statistical convergence. Analysis, 5 (1985), 301–313.
A. G¨okhan and M. G¨ung¨or: On pointwise statistical convergence. Indian J. Pure Appl. Math., 33 (9) (2002), 1379–1384.
M. G¨ung¨or and A. G¨okhan: On uniform statistical convergence. Int. J. Pure Appl. Math., 19 (1) (2005), 17–24.
M. Isik and K. E. Akbas¸: On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability. ITM Web of Conferences 13, 01024 (2017). DOI: 10.1051/itmconf/20171301024.
F. M´oricz: Statistical limits of measurable functions. Analysis (Munich) 24 (1) (2004), 1–18.
S. R. Sadigova: μ−statistical convergence and the space of functions μ−stat continuous on the segment. Carpathian Math. Publ. 13 (2) (2021), 433–451.
S. R. Sadigova, R. R. Hasanli and C. Karacam: On a space of μ−statistical continuous functions. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 44 (1) (2018), 70–80.
T. ˇSal´at: On statistically convergent sequences of real numbers. Math. Slovaca, 30 (1980), 139–150.
I. J. Schoenberg: The integrability of certain functions and related summability methods. Amer. Math. Monthly, 66 (1959), 361–375.
H. S¸eng¨ul and M. Et: On (λ, I)- Statistical Convergence of α of Sequences of Function. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 88 (2) (2018), 181–186.
H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73–74.
DOI: https://doi.org/10.22190/FUMI230716037S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)