ON GENERALIZATIONS OF STIRLING NUMBERS AND SOME WELL-KNOWN MATRICES
Abstract
We introduce a generalization of the Stirling numbers of the first kind and the second kind. By arranging these numbers into matrices, we generalize the Stirling matrices of the first kind and the second kind investigated by Cheon and Kim [Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001) 49–59]. Furthermore, we introduce generalizations of the Pascal matrix and the symmetric Pascal matrix with two real arguments, and generalize earlier results related to the Pascal matrices, Stirling matrices and matrices involving Bell numbers.
Keywords
Full Text:
PDFReferences
R. Aggarwala and M.P. Lamoureux: Inverting the Pascal matrix plus one. Amer. Math. Monthly 109 (2002), 371–377.
M. Bayat: Generalized Pascal k-eliminated functional matrix with 2n variables. Electron. J. Linear Algebra 22 (2011), 419–429.
G.S. Call and D.J. Velleman: Pascal matrices. Amer. Math. Monthly 100 (1993), 372–376.
M. Can and M. C. Daglı: Extended Bernoulli and Stirling matrices and related combinatorial identities. Linear Algebra Appl. 444 (2014), 114–131.
V. Chaurasia and H. Parihar: On Generalized Stirling Numbers and Polynomials. Adv. in Appl. Math. 2 (2007), 9 –13.
G. S. Cheon and J. S. Kim: Stirling matrix via Pascal matrix. Linear Algebra Appl. 329 (2001), 49–59.
G. S. Cheon, J. S. Kim and H. W. Yoon: A note on Pascal’s matrix. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6 (1999), 121–127.
G. S. Cheon and J. S. Kim: Factorial Stirling matrix and related combinatorial sequences. Linear Algebra Appl. 357 (2002), 247–258.
G. S. Cheon and M. E. Mikkawy: Extended symmetric Pascal matrices via hypergeometric functions. Appl. Math. Comput. 158 (2004), 159–168.
H. Cobo: The Pascal matrix in the multivariate Riordan group. Linear Algebra Appl. 635 (2022), 1–23.
L. Comtet: Advanced Combinatorics. Reidel, Dordrecht, 1974.
O. Devecı and E. Karaduman: The cyclic groups via the Pascal matrices and the generalized Pascal matrices. Linear Algebra Appl. 437 (10) (2012), 2538–2545.
B. S. Desouky, N. Cakic and T. Mansour: Modified approach to generalized Stirling numbers via differential operators. Appl. Math. Lett. 23 (2010), 115–120.
P. K. Doh, K. H. Adjallah and B. Birregah: Thirty-six full matrix forms of the Pascal triangle: Derivation and symmetry relations. Sci. Afr. 13 (2021) e00932.
R. L. Graham, D. E. Knuth and O. Patashnik: Concrete mathematics: a foundation for computer science. Addison-Wesley, 1994.
A. Edelman and G. Strang: Pascal matrices. Amer. Math. Monthly 111 (2004), 189–197.
M. Griffiths and I. Mezo: A generalization of Stirling numbers of the second kind via a special multiset. J. Integer Seq. 13 (2010), Article 10.2.5.
L. Hsu and P. Shiue: A unified approach to generalized Stirling numbers. Adv. in Appl. Math. 20 (1998), 366–384.
W. Lang: Combinatorial Interpretation of Generalized Stirling Numbers. J. Integer Seq. 12 (2009), Article 09.3.3.
P. Maltais and T. A. Gulliver: Pascal matrices and Stirling numbers. Appl. Math. Letters 11 (2) (1998), 7–11.
R. Merris: The p-Stirling numbers. Turkish J. Math. 24 (2000), 379–399.
M. E. Mikkawy: On a connection between the Pascal, Vandermonde and Stirling matrices - I. Appl. Math. Comput. 145 (2003), 23–32.
M. E. Mikkawy: On a connection between the Pascal, Vandermonde and Stirling matrices - II. Appl. Math. Comput. 146 (2003), 759–769.
M. E. Mikkawy and B. Desouky: On a connection between symmetric polynomials, generalized Stirling numbers and the Newton general divided difference interpolation polynomial. Appl. Math. Comput. 138 (2003), 375–385.
A. Moghaddamfar and S. Pooya: Generalized Pascal triangles and Toeplitz matrices. Electron. J. Linear Algebra 18 (2009), 564–588.
C. Mortici: Best estimates of the generalized Stirling formula. Appl. Math. Comput. 215 (2010), 4044–4048.
A. Nikseresht, M. B. Khormaei and S. Namazi: A generalization of the pascal matrix and an application to coding theory. Linear Multilinear Algebra (2023), DOI: 10.1080/03081087.2023.2187015.
J. Remmel and M. Wachs: Rook Theory, Generalized Stirling Numbers and (p; q)-analogues. Electron. J. Combin. 11 (2004), # R84.
M. Spivey and A. Zimmer: Symmetric polynomials, Pascal matrices and Stirling matrices. Linear Algebra Appl. 428 (2008), 1127–1134.
S. Stanimirovic : A generalization of the Pascal matrix and its properties. Facta Universitatis, Ser. Math. Inform. 26 (2011), 17–27.
P. Stanimirovic and S. Stanimirovic: Inverting linear combinations of identity and generalized Catalan matrices. Linear Algebra Appl. 433 (2010), 1472–1480.
C. Wagner: Generalized Stirling and Lah numbers. Discrete Math. 160 (1996), 199–218.
W. Wang: Generalized higher order Bernoulli number pairs and generalized Stirling number pairs. J. Math. Anal. Appl. 364 (2010), 255–274.
W. Wang and T. Wang: Identities via Bell matrix and Fibonacci matrix. Discrete Appl. Math. 156 (2008), 2793–2803.
S.-L. Yang and H. You: On a connection between the Pascal, Stirling and Vandermonde matrices. Discrete Appl. Math. 155 (2007), 2025–2030.
Y. Yang: Generalized Leibniz functional matrices and factorizations of some well-known matrices. Linear Algebra Appl. 430 (2009), 511–531.
Y. Yang and C. Micek: Generalized Pascal functional matrix and its applications. Linear Algebra Appl. 423 (2007), 230–245.
Z. Zhang: The linear algebra of the generalized Pascal matrices. Linear Algebra Appl. 250 (1997), 51–60.
Z. Zhang and M. Liu: An extension of the generalized Pascal matrix and its algebraic properties. Linear Algebra Appl. 271 (1998), 169–177.
Z. Zhang and T. Wang: Generalized Pascal matrix and recurrence sequences. Linear Algebra Appl. 283 (1998), 289–299.
DOI: https://doi.org/10.22190/FUMI230822055S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)