QUASI-PARA-SASAKIAN MANIFOLD ADMITTING ZAMKOVOY CONNECTION

Sandeep K. Mishra, Giteshwari Pandey, Shravan K. Pandey, Ram N. Singh

DOI Number
https://doi.org/10.22190/FUMI230824056M
First page
869
Last page
893

Abstract


The purpose of the present study is to deduce some curvature properties of quasi-para-Sasakian manifold equipped with respect to Zamkovoy connection. In the present article we have studied Locally $\phi$-symmetric quasi-para-Sasakian manifold, $\phi$-recurrent quasi-para-Sasakian manifold, Locally projective $\phi$-symmetric quasi-para-Sasakian manifold, $\phi$-projectively flat quasi-para-Sasakian manifold, pseudo-quasi-conformally flat quasi-para-Sasakian manifold,  $\phi$-pseudo-quasi-conformally flat quasi-para-Sasakian manifold with respect to Zamkovoy connection. Also we have shown that the quasi-para-Sasakian manifold with respect to Zamkovoy connection $\bar{\nabla}$ satisfying $\bar{\tilde{V}}(\xi, U).\bar{S}=0,$ where $\bar{\tilde{V}}$ and $\bar{S}$ are the pseudo-quasi-conformal curvature tensor and Ricci tensor with respect to Zamkovoy connection respectively.

Keywords

Quasi-Para-Sasakian manifold, Projective curvature tensor, Pseudo-quasi-conformal curvature tensor, Zamkovoy connection.

Full Text:

PDF

References


bibitem{ABKKB} A. Biswas and K.K. Baishya, textit{A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds,} Scientific Studies and Research Series Mathematics and Informatics., textbf{29(1)}, textbf{(2019)}, 233-246.

bibitem{BLA1} A. M. Blaga, textit{Canonical connections on para kenmotsu manifold,} Navi Sad. J. Math., {bf45(2)}, textbf{(2015)}, 131-142.

bibitem{BLA2} D. E. Blair, textit{The theory of quasi-Sasakian structure,} J. Differential Geom., {bf1}, textbf{(1967)}, 331-345 .

bibitem{UCDE2} U.C. De and A. Sarkar, textit{On the Projective curvature tensor of generalized Sasakian-Space-Forms,} Questiones Math., textbf{33}, textbf{(2010)}, 245-252.

bibitem{UCDE3} U.C. De and A. Sarkar, textit{Some Results on Generalized Sasakian-Space-Forms,} Thai Journal of Mathematics., textbf{8(1)}, textbf{(2010)}, 1-10.

bibitem{UCDE1} U.C. De and K. De, textit{LP-Sasakian manifolds with quasi-conformal curvature tensor,} SUT Journal of Mathematics., textbf{49(1)}, textbf{(2013) }, 33-46.

bibitem{UCDE4} U.C. De and P. Majhi, textit{Concircular curvature tensor on K-contact manifolds,} Acta Mathematica Academae Paedagogicae Nyrehaziensis., textbf{29}, textbf{(2013)}, 89-99.

bibitem{UCDE6} U.C. De, Yanling Han and K. Mandal, textit{On para-Sasakian manifolds satisfying certain curvature conditions,} Filomat., textbf{31(7)}, textbf{(2017)}, 1941-1947.

bibitem{UCDE5} U.C. De and Y.J. Suh, textit{Yamabe and quasi-Yamambe solitons in paracontact metric manifolds,} International Journal of Geometric Methods and Modern Physics., textbf{18(12)}, textbf{(2021)}.

bibitem{KII1} I. Kupili Erken, textit{Some classes of 3-dimensional normal almost paracontact metric manifolds,} Honam Math. J., {bf37(4)},textbf{(2015)}, 457-468.

bibitem{KII2} I. Kupili Erken., textit{On normal almost paracontact metric manifolds of dimension 3,} Facta. Univ. Ser. Math. Inform., {bf30(5)}, textbf{(2015)}, 777-788.

bibitem{KAN3} S. Kaneyuki, textit{Quasi-Saskian manifolds,} Tohoku Math. J., {bf29}, textbf{(1977)}, 227-233.

bibitem{KAN1} S. Kaneyuki, M. Konzai, textit{Para complex structure and affine symmetric space,} Tokyo J. Math., {bf8}, textbf{(1985)}, 301-318.

bibitem{SKUND1} S. Kundu, textit{On $P-$ Sasakian manifolds,} Mathe. Report., textbf{15(65)}, textbf{(2013)}, 221-232.

bibitem{OLS2} Z. Olszak, textit{Curvature properties of quasi-Saskian manifolds,} Tensor., {bf38}, textbf{(1982)}, 19-28.

bibitem{OLS1} Z. Olszak, textit{Normal almost contact metric manifolds of dimension three,} Ann. Polon. Math., {bf(47)},textbf{ (1986)}, 41-50.

bibitem{DGPK1} D. G. Prakasha, T.R. Shivamurthy and K.K. Mirji, textit{On Pseude-quasi-conformal curvature tensor of $P-$Sasakian manifolds,} Elect. J. Math. Anal. Appl., textbf{5(2)}, textbf{(2017)}, 147-155.

bibitem{SKP3} R. N. Singh, S. K. Pandey and G. Pandey, textit{On a Type of Kenmotsu Manifold,} Bulletin of Mathematical Analysis and Applications, {bf 4(1)}, textbf{(2012)}, 117-132.

bibitem{SKP2} R. N. Singh, S. K. Pandey, G. Pandey and K. Tiwari textit{On a Semi-Symmetric Metric Connection in an ($epsilon$)-Kenmotsu Manifold,} Commun. Korean Math. Soc., {bf(29)}, textbf{(2014)}, 331-343.

bibitem{SKP1} R. N. Singh and S. K. Pandey , textit{On a Quarter-Symmetric Metric Connection in an LP-Sasakian Manifold,} Thai Journal of Mathematics., {bf(12)}, textbf{(2014)}, 357-371.

bibitem{AASA1}A. A. Shaikh and S.K. Jana, textit{A pseudo-quasi-conformal curvature tensor on Riemannian manifolds,} South East Asian J. Math.Science., {bf 4}, textbf{(2005)}, 15-20.

bibitem{TTK1} T. Takahashi, textit{Sasakian $phi$-symmetric spaces,} Tohoku Math. J. {bf(29)}, textbf{(1977)}, 91-113.

bibitem{TAN2} S. Tanno, textit{Quasi-Saskian structure of rank 2p+1,} J. Differential Geom., {bf5}, textbf{(1971)}, 317-324.

bibitem{TAN1} S. Tanno, textit{Variation problem on contact Riemannian manifolds,} Trans. Amer, Math Soc.,{(bf314)}, textbf{(1989)}, 349-379.

bibitem{KYAN1} K. Yano and S. Sawaki, textit{Riemannian manifolds admitting a conformal transmation group,} J. Differential. Geom., textbf{2,} textbf{(1968)}, 161-184.

bibitem{ZAM} S. Zamkovoy, textit{Canonical connections on paracontact manifolds,} Ann. Global And Geom., {bf36(1)}, textbf{(2008)}, 37-60.




DOI: https://doi.org/10.22190/FUMI230824056M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)