PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION

. Vandana, Rajeev Budhiraja, Kamran Ahmad, Aliya Naaz Siddiqui

DOI Number
https://doi.org/10.22190/FUMI230825034V
First page
493
Last page
505

Abstract


In the year 2019, Guler and Crasmareanu [6] conducted an investigation into another geometric flow known as the Ricci-Yamabe map. This map is nothing but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective of the current paper is to provide a characterization of a Ricci Yamabe soliton on a para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold is shrinking, expanding, or steady. Subsequently, we generalize these findings to Ricci-Yamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian manifold admitting a Ricci-Yamabe soliton which satisfies our results.


Keywords

Ricci-Yamabe soliton, Para-Sasakian manifold, Quasi-Einstein manifold.

Full Text:

PDF

References


M. Ahmad: CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection. Bull. Korean Math. Soc., 49 (2012), 25-–32.

E. Barbosa and E. Ribeiro Jr.: On conformal solutions of the Yamabe flow. Arch. Math. 101 (2013), pp-7989.

G. Catino and L. Mazzieri: Gradient Einstein solitons. Nonlinear Anal., 132 (2016), 66—94.

U. C. De and A. K. Gazi: On nearly quasi-Einstein manifolds. Novi Sad J. Math. 38 (2008), 115—121.

S. Golab: On semi-symmetric and quarter symmetric linear connections Tensor. N. S. 29 (1975), 249—254.

S. Guler and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turk. J. Math. 43 (2019), 2361–2641.

R. S. Hamilton: The Ricci flow on surfaces. Mathematics and general relativity, Contemp. Math. 71 (1988), 237—262.

R. S. Hamilton: Three manifold with positive Ricci curvature. J. Differential Geom. 17(2) (1982), 255–306.

S. K. Hui and D. Chakraborty: Para-Sasakian manifolds and Ricci solitons. Ilirias J. Math. 6 (2017), 25–34.

K. Mandal and U. C. De: Quarter-symmetric metric connection in a P-Sasakian manifold. Annals of West University of Timisoara - Math. Comp. Sci., LIII 1 (2015), 137–150.

S. Roy, S. Dey and A. Bhattacharyya: Some results on η-Yamabe Solitons in 3-dimensional trans-Sasakian manifold. Carpathian Math. Publ. 14(1) (2022), 158–170.

S. Roy, S. Dey, A. Bhattacharyya and M. D. Siddiqi: ∗-η-Ricci-Yamabe solitons on α-Cosymplectic manifolds with a quarter-symmetric metric connection. arXiv preprint arXiv:2109.04700 (2021).

A. A. Shaikh: On pseudo quasi-Einstein manifolds. Periodica Math. Hungarica, 59 (2009), 119—146.

A. N. Siddiqui and M. D. Siddiqi: Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime. Balkan J. Geom. Appl., 26(2) (2021), 126–138.

M. D. Siddiqi and M. A. Akyol: η-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds. arXiv:2004.14124v1 [math.DG](2020).

K. Yano and M. Kon: Structures on manifolds. Worlds Scientific, Singapore, 1984.

S. Zamkovoy: Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geo. 36 (2009), 37–60.




DOI: https://doi.org/10.22190/FUMI230825034V

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)