ON CONFORMAL-MATSUMOTO CHANGE OF m-TH ROOT FINSLER METRICS
Abstract
Keywords
Full Text:
PDFReferences
S. I. Amari and H. Nagaoka, Methods of Information Geometry, AMS Translations Mathematical Monographs, Oxford University Press, (2000).
D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3, Journal of London Mathematical society, 66(2):453-467, (2002).
R. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Mathematica 3(2):161-203, (1997).
S. S. Chern and Z. Shen, Riemannian-Finsler geometry, Singapore, World Scientic, (2005).
G. Hamel, Uber die Geometrien in denen die Geraden die K¨urzesten sind., ¨ Math Ann, 57:231-264, (1903).
M. Kumar and C. K. Mishra, On conformal Kropina transformation of m-th root metrics, Journal of the Indian Math. Soc., 88(1-2):97-104, (2021).
M. Kumar, Locally dually flatness and locally projectively flatness of Matsumoto change with m-th root Finsler metrics, Journal of Finsler Geometry and its Applications, 2(1):31-39, (2021).
Z. Shen and Q. Xia, A class of Randers metrics of scalar flag curvature, Int. J. Math., 24(7):1350055, (2013).
Z. Shen, Differential geometry of spray and Finsler spaces, Springer, (2013).
H. Shimada, On Finsler space with the metric L = pm ai1...imyi1...yim, Tensor N.S., 33(3):365-372, (1979).
A. Tayebi, M. Shahbazi Nia, and E . Peyghan, On generalized m-th root Finsler metrics, Linear Algebra and its Applications, 437:675-683, (2012).
A. Tayebi and B. Najafi, On m-th root Finsler metrics, Journal of Geometry and Physics, 8(1):14-20, (2015).
B. Tiwari, M. Kumar and A. Tayebi, On generalized Kropina change of generalized m-th root Finsler metrics, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 91(3):443-450, (2021).
DOI: https://doi.org/10.22190/FUMI230830057G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)