ROUGH STATISTICAL CONVERGENCE OF SEQUENCES IN A PARTIAL METRIC SPACE
Abstract
In this paper, using the concept of natural density, we have introduced the notion of rough statistical convergence which is an extension of the notion of rough convergence in a partial metric space. We have defined the set of rough statistical limit points of a sequence in a partial metric space and proved that this set is closed and bounded. Finally, we have found out the relationship between the set of statistical cluster points and the set of rough statistical limit points of sequences in a partial metric space.
Keywords
Full Text:
PDFReferences
S. Aytar: Rough statistical convergence. Numer. Funct. Anal. Optim. 29(3-4) (2008), 291-303.
S. Aytar: The rough limit set and the core of a real Sequence. Numer. Funct. Anal. Optim. 29(3-4) (2008), 283-290.
A. K. Banerjee and A. Dey: Metric Spaces and Complex Analysis. New Age International (P) Limited, Publication, ISBN-10: 81-224-2260-8, ISBN-13: 978-81-224-2260-3.
A. K. Banerjee and R. Mondal: Rough convergence of sequences in a cone metric space, J. Anal. 27(3-4) (2019), 1179–1188.
A. K. Banerjee and S. Khatun: Rough convergence of sequences in a partial metric space, arXiv: 2211.03463, 2022.
D. Bugajewski, P. Mackowiak and R. Wang: On Compactness and Fixed Point Theorems in Partial Metric Spaces. Fixed Point Theory, 23 (1) (2022), 163-178.
S. Debnath and D. Rakshit: Rough convergence in metric spaces. In: Dang, P., Ku, M., Qian, T., Rodino, L. (eds) New Trends in Analysis and Interdisciplinary Applications. Trends in Mathematics(). Birkh¨auser, Cham.https : //doi.org/10.1007/978 − 3 − 319 − 48812 − 757.
H. Fast: Sur la convergence ststistique. Colloq. Math. 2 (1951), 241-244.
N. Hossain and A. K. Banerjee: Rough I-convergence in intuitionistie fuzzy normed space. Bulletin of Mathematical Analysis and Application, 14(4) (20220), 1-10.
P. Malik and M. Maity: On rough convergence of double sequence in normed linear spaces. Bull. Allahabad Math. Soc. 28(1) (2013), 89-99.
P. Malik and M. Maity: On rough statistical convergence of double sequences in normed linear spaces. Afr. Mat. 27(2016), 141-148.
S. Matthews: Partial metric topology. In: Proceedings of the 8th Summer Conference on General Topology and Applications. Annals of the New York Academy of Sciences, 728 (1994), 183-197.
F. Nuray: Statistical convergence in partial metric spaces. Korean J. Math 30(1) (2022), 155–160.
H. X. Phu: Rough convergence in normed linear spaces. Numer. Funct. Anal. Optim. 22(1-2) (2001), 199-222.
H. X. Phu: Rough convergence in infinite dimensional normed spaces. Numer. Funct. Anal. Optim. 24(2-3) (2003), 285-301.
H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951) 73-74.
T. Salat: On statistically convergent sequence of real numbers. Mathematica Slovaca, 30(2) (1980), 139-150.
DOI: https://doi.org/10.22190/FUMI240312016K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)