A STUDY OF THE HASIMOTO SURFACES CONSTRUCTED BY THE TANGENT SPHERICAL INDICATRICES IN EUCLIDEAN 3-SPACE
Abstract
In this study, we investigate the vortex filament equation formed by the tangent spherical indicatrix of a unit-speed moving curve in Euclidean 3-space. For this purpose, the relations between the Frenet frames of the space curve and its tangent spherical indicatrix are considered. Then we introduce how the Hasimoto surfaces are constructed by the tangent spherical indicatrices and put forth some characterizations via related new findings. In the meantime, we present the first and second fundamental forms, Gaussian, and mean curvatures of this type of Hasimoto surface. Finally, we express some properties of the parameter curves of these Hasimoto surfaces with respect to the characters of both the tangent indicatrix and the original curve.
Keywords
Full Text:
PDFReferences
N. H. Abdel-All, R. A. Hussien and T. Youssef: Hasimoto surfaces. Life Sci. J. 9 (2012), 556-560.
A. T. Ali: New special curves and their spherical indicatrices. Glob. J Adv. Res. Class. Mod. Geom. 1 (2012), 28-38.
A. Cakmak: Parallel surfaces of Hasimoto surfaces in Euclidean 3-Space. Bitlis Eren Uni. J. of Sci. 7(1) (2018), 125-132.
M. Erdogdu and M. Ozdemir: Geometry of Hasimoto surfaces in Minkowski 3-space. Math. Phys. Anal. Geom. 17 (2014), 169-181.
K. Eren: New representation of Hasimoto surfaces with the modified orthogonal frame. Konuralp J. of Math. 10(1) (2022), 69-72.
K. Eren and A. Kelleci: On the harmonic evolute surfaces of Hasimoto surfaces. Adıyaman Uni. J. of Sci. 11(1) (2021), 87-100.
K. Eren, Z. Myrzakulova, S. Ersoy and R. Myrzakulov: Solutions of localized induction equation associated with involute evolute curve pair. Soft Comp. 28 (2024), 105-117.
M. Grbović and E. Nešović: On Backlund transformation and vortex filament equation for null Cartan curve in Minkowski 3-space. Math. Phys. Anal. Geo. 23 (2016), 1-15.
M. Grbović and E. Nešović: On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space. J. Math. Anal. Appl. 461 (2018), 219-233.
N. Gurbuz: Hasimoto surfaces according to three classes of curve evolution with Darboux frame in Euclidean space. Gece Publishing 1 (2018), 49-62.
H. Hasimoto: A soliton on a vortex filament. J. Fluid. Mech. 51 (1972), 477-485.
H. Hasimoto: Motion of a vortex filament and its relation to elastica. J. Phys. Soc. Jpn. 31 (1971), 293-294.
K. Ilarslan, K. Camcı, H. Kocayigit and H. H. Hacısalihoglu: On the explicit characterization of spherical curves in 3-dimensional Lorentzian space. J. Inv. III-Posed Problems 11 (2003), 389-397.
T. A. Ivey: Helices, Hasimoto surfaces and Backlund transformations. Canad. Math. Bull. 43 (2000), 427-439.
S. Izumiya and N. Takeuchi: New special curves and developable surfaces. Turk. J. Math. 28 (2004), 531-537.
A. Kelleci, M. Bektas¸ and M. Ergut: The Hasimoto surface according to Bishop frame. Adyu. J. Sc. 9 (2019), 13-22.
L. Kula, N. Ekmekci, Y. Yaylı and K. Ilarslan: Characterizations of slant helices in Euclidean 3-space. Turk. J. Math. 34 (2010), 261-274.
L. Kula and Y. Yaylı: On slant helix and its spherical indicatrix. Appl. Math. Comp. 169 (2005), 600-607.
C. Rogers and W. K Schief: Backlund and Darboux Transformations. Cambridge University Press (2002).
D. J. Struik: Lectures on classical Differential Geometry. second edn. Dover Publications, Inc., New York (1988).
A. Yazla and M. T. Sarıaydın: On surfaces constructed by evolution according to quasi frame. Facta Universitatis, Ser. Math. Inform. 35(3) (2020), 605-619.
S. Yılmaz, E. Ozyılmaz and M. Turgut: New spherical indicatrices and their characterizations. Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat. 18 (2010), 337-354.
DOI: https://doi.org/10.22190/FUMI240429030E
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)