COMMON FIXED POINT FOR w−COMPATIBLE MAPS IN A BIPOLAR METRIC SPACE

Penumarthy Parvateesam Murthy, Chandra Prakash Dhuri, Uma Devi Patel

DOI Number
https://doi.org/10.22190/FUMI240515032M
First page
421
Last page
438

Abstract


The purpose of this paper is to establish some common fixed point theorems of w-compatible maps in bipolar metric spaces by employing a comparison function ϕ instead of some altering distance functions. We employ generalized type contraction conditions involving the comparison function ϕ to enunciate common fixed point theorems. Further, we provide illustrative examples to uphold our results.

Keywords

w−compatible maps, bipolar metric spaces.

Full Text:

PDF

References


A. E-S. Ahmed, A. J. Asad and S. Omran: Fixed point theorems in quaternionvalued metric spaces. Abstract and Applied Analysis (2014), 2589.

A. Azam, B. Fisher and M. Khan Common Fixed point theorems in complex valued metric spaces. Numerical Functional Analysis and Optimization 32 (2011), 243–253.

I. A. Bakhtin: The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26–37.

S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3 (1922), 133–181.

V. Berinde: Iterative Approximation of Fixed Points, (2nd Edition). Springer Berlin Heidelberg New York (2007).

L. Budhia, H. Aydi, A. H. Ansari and D. Gopal: Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations. Nonlinear Analysis: Modelling and Control 25(4) (2020), 580–597.

A. Branciari: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29 (2002), 531–536.

P. Z. Daffer and H. Kaneko: On expansive mappings. Math. Japonica 37 (1992), 733–735.

R. D. Daheriya, R. Jain and M. Ughade: Some fixed point theorem for expansive type mapping in dislocated metric spaces. ISRN Mathematical Analysis 5 (2012), 376832.

B. C. Dhage: Generalized metric space and mapping with fixed point. Bull. Cal. Math. Soc. 84 (1992), 329–336.

M. R. Frechet: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22 (1906), 1–74.

Y. U. Gaba, M. Aphane and H. Aydi: (α,BK)-Contractions in Bipolar Metric Spaces. Journal of Mathematics 2021(1) (2021), 1–6.

S. Gahler: 2-metriche raume und ihre topologische strukture. Math. Nachr. 26 (1963), 115–148.

A. A. Gillespie and B. B. Willams: Fixed point theorems for expanding maps. Technical report 154 (1981), 1–6.

U. Gurdal, A. Mutlu and K. Ozkan: Fixed point results for α − ψ-contractive mappings in bipolar metric spaces. J. Inequal. Spec. Funct. 11(1) (2020), 64–75.

U. Gurdal, R. Yapalı and A. Mutlu: Generalized Kuratowski Closure Operators in The Bipolar Metric Setting. Proceedings of International Mathematical Sciences 6(1) (2024), 1–17.

P. Hitzler and A. Seda: Mathematical Aspects of Logic Programming Semantics, Studies in Informatics Series. Chapman and Hall, CRC Press, Taylor and Francis Group (2011).

L. G. Huang and X. Zhang: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), 1468–1476.

X. Huang, C. Zhu and X. Wen: Fixed point theorems for expanding mappings in partial metric spaces. An.St. Univ. Ovidius Constana 20(1) (2012), 212–224.

G. Jungck: Compatible mappings and common fixed points. International journal of mathematics and mathematical sciences 9(4) (1986), 771–779.

G. N. V. Kishore, R. P. Agarwal, B. S. Rao and R. V. N. Srinivasa Rao: Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications. Fixed point theory and Applications 1 (2018), 1–13.

M. Kumar, P. Kumar, A. Mutlu, R. Ramaswamy, O. A. A. Abdelnaby and S. Radenović: Ulam-Hyers Stability and Well-Posedness of Fixed Point Problems in C∗-Algebra Valued Bipolar b-Metric Spaces. Mathematics 11(10) (2023), 2323.

S. G. Matthews: Partial metric topology. Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci. 728 (1994), 183–197.

P. P. Murthy, C. P. Dhuri, S. Kumar, R. Ramaswamy, M. A. Alaskar and S. Radenović: Common fixed point for Meir-Keeler type contraction in bipolar metric space. Fractal and Fractional 6(11) (2022), 649.

Z. Mustafa and B. Sims: A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis 2 (2006), 289–297.

A. Mutlu and U. Gurdal: Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 9(9) (2016), 5362–5373.

A. Mutlu, K. Ozkan and U. Gurdal: Coupled fixed point theorems on bipolar metric spaces. European journal of pure and applied Mathematics 10(4) (2017), 655–667.

A. Mutlu, K. Ozkan and U. Gurdal: Fixed point theorems for multivalued mappings on bipolar metric spaces. Fixed Point Theory 21(1) (2020), 271–280.

A. Mutlu, K. Ozkan and U. Gurdal: Locally and weakly contractive principle in bipolar metric spaces. TWMS Journal of Applied and Engineering Mathematics 10(2) (2020), 379–388.

K. Ozkan, U. Gurdal and A. Mutlu: A Generalization of Amini-Harandi’s Fixed Point Theorem with an Application to Nonlinear Mapping Theory. Fixed Point Theory 21(2) (2020), 707–714.

K. Ozkan, U. Gurdal and A. Mutlu: Caristi’s and Downing-Kirk’s fixed point Theorems on bipolar metric spaces. Fixed point theory 22(2) (2021), 785–794.

B. S. Rao and G. N. V. Kishore: Common fixed point theorems in bipolar metric spaces with applications to integral equations. Int. J. Eng. Technol. 7 (2018), 1022–1026.

E. Rakotch: A note on contractive mappings. Proceedings of the American Mathematical Society 13(3) (1962), 459–465.

S. Sedghi and N. V. Dung: Fixed point theorems on Super metric spaces. Mat. Vesnik 66(1) (2014), 113–124.

S. Sedghi, M. Sımkha, U. Gurdal and A. Mutlu: Fixed Point Theorems for Contravariant Maps in Bipolar b-Metric Spaces with Integration Application. Proceedings of International Mathematical Sciences 6(1) (2024), 29–43.

S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iseki: Some fixed point theorems on expansion mappings. Math. Jpn. 29 (1984), 631–636.

M. Younis, A. Mutlu and H. Ahmad: Ciri´c Contraction with Graphical Structure ´ of Bipolar Metric Spaces and Related Fixed Point Theorems. Hacettepe Journal of Mathematics and Statistics 53(6) (2024), 1588–1606.




DOI: https://doi.org/10.22190/FUMI240515032M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)