ON ϕ-RECURRENT TYPES OF PARACONTACT METRIC (κ ̸= −1, µ)-MANIFOLDS

Saime Durum, İrem Küpeli Erken, Mustafa Özkan

DOI Number
https://doi.org/10.22190/FUMI240516033D
First page
439
Last page
453

Abstract


The main aim of the present paper is to investigate geometric properties of hyper-generalized ϕ-recurrent and quasi-generalized ϕ-recurrent paracontact metric (κ ̸= -1, µ)-manifolds.


Keywords

paracontact metric (κ, µ)-manifold, hyper-generalized ϕ-recurrent manifold, quasi-generalized ϕ-recurrent manifold.

Full Text:

PDF

References


K. Arslan, U. C. De, C. Murathan and A. Yıldız: On generalized recurrent Riemannian manifolds. Acta Mathematica Hungarica 123(1–2) (2009), 27–39.

B. Cappelletti Montano, I. Kupeli Erken and C. Murathan: Nullity conditions in paracontact geometry. Differential Geometry and its Applications 30 (2012), 665–693.

E. Cartan: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. Fr. 54 (1926), 214–264.

K. De and U. C. De: Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons in paracontact geometry. Quaestiones Mathematicae 44 (11) (2020), 1429–1440.

K. De and U. C. De: ∆-Almost Yamabe Solitons in Paracontact Metric Manifolds. Mediterr. J. Math. 18(218) (2021).

K. De and U. C. De: Riemann Solitons on Para-Sasakian Geometry. Carpathian Math. Publ. 14 (2022), 395–405.

K. De, U. C. De and F. Mofarreh: m-quasi Einstein Metric and Paracontact Geometry. International Electronic Journal of Geometry. 15(2) (2022), 304–312.

U. C. De, G. Ghosh and K. De: Characterization of a paraSasakian manifold admitting Bach tensor. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 72(3) (2023), 826–838.

U. C. De, N. Guha and D. Kamilya: On generalized Ricci-recurrent manifolds. Tensor (N. S.) 56(3) (1995), 312–317.

U. C. De and A. Kalam Gazi: On generalized concircularly recurrent manifolds. Studia Scientiarum Mathematicarum Hungarica 46(2) (2009), 287–296.

U. C. De, A. A. Shaikh and S. Biswas: On ϕ-recurrent Sasakian manifolds. Novi Sad J. Math. 33(2) (2003), 43–48.

R. S. Dubey: Generalized recurrent spaces. Indian J. Pure App. Math. 10(12) (1979), 1508–1513.

M. Khatri and J. P. Singh: On a class of generalized recurrent (κ, µ)-contact metric manifolds. Commun. Korean Math. Soc. 35(4) (2020), 1283–1297.

E. M. Patterson: Some theorems on Ricci recurrent spaces. J. Lond. Math. Soc. 27 (1952), 287–295.

H. S. Ruse : On simply harmonic spaces. J. Lond. Math. Soc. 21 (1946), 243–247.

V. Venkatesha, H. A. Kumara and D. A. Naik: On a class of generalized ϕ-recurrent Sasakian manifold. J. Egyptian Math. Soc. 27(1) (2019), pp 14.

S. Zamkovoy: Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36 (2009), 37–60.




DOI: https://doi.org/10.22190/FUMI240516033D

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)