NEW CRITERIA FOR STARLIKENESS IN THE UNIT DISC
Abstract
It is well-known that the condition $\real \left[1+\frac{zf''(z)}{f'(z)}\right]>0$, $z\in {\mathbb D}$, implies that $f$ is starlike function (i.e. convexity implies starlikeness). If the previous condition is not satisfied for every $z\in \D$, then it is possible to get new criteria for starlikeness by using $\left|\arg\left[\alpha +\frac{zf''(z)}{f'(z)}\right]\right|$, $z\in{\mathbb D}$, where $\alpha>1.$
Keywords
Full Text:
PDFReferences
P.L. Duren, Univalent function, Springer-Verlag, New York, 1983.
I. Jovanović and M. Obradović, A note on certain classes of univalent functions, Filomat, 9(1) (1995), 69–72.
M. Nunokawa, On properties of non-Caratheodory functions, Proc. Japan Acad., 68, Ser.A (1992), 152-153.
S. Ozaki, On the theory of multivalent functions, II, Sci. Rep. Tokyo,Bunrika Daigaku 4 (1941), 45-87.
R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47 (1982), 309-314.
T. Umezava, Analytic functions convex in one direction, J. Math. Soc. Japan, 4 (1952), 194-202.
DOI: https://doi.org/10.22190/FUMI240519038O
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)