NEW CRITERIA FOR STARLIKENESS IN THE UNIT DISC

Milutin Obradović, Nikola Tuneski

DOI Number
https://doi.org/10.22190/FUMI240519038O
First page
525
Last page
533

Abstract


It is well-known that the condition $\real \left[1+\frac{zf''(z)}{f'(z)}\right]>0$, $z\in {\mathbb D}$, implies that $f$ is starlike function (i.e. convexity implies starlikeness). If the previous condition is not satisfied for every $z\in \D$, then it is possible to get new criteria for starlikeness by using $\left|\arg\left[\alpha +\frac{zf''(z)}{f'(z)}\right]\right|$, $z\in{\mathbb D}$, where $\alpha>1.$


Keywords

Starlike functions, analytic function criteria, argument conditions

Full Text:

PDF

References


P.L. Duren, Univalent function, Springer-Verlag, New York, 1983.

I. Jovanović and M. Obradović, A note on certain classes of univalent functions, Filomat, 9(1) (1995), 69–72.

M. Nunokawa, On properties of non-Caratheodory functions, Proc. Japan Acad., 68, Ser.A (1992), 152-153.

S. Ozaki, On the theory of multivalent functions, II, Sci. Rep. Tokyo,Bunrika Daigaku 4 (1941), 45-87.

R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47 (1982), 309-314.

T. Umezava, Analytic functions convex in one direction, J. Math. Soc. Japan, 4 (1952), 194-202.




DOI: https://doi.org/10.22190/FUMI240519038O

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)