NEW RESULTS ON $(\grave{k},\grave{\mu})$-CONTACT METRIC MANIFOLDS

Ahmet Yıldız, Bilal Eftal Acet

DOI Number
https://doi.org/10.22190/FUMI240522039Y
First page
535
Last page
543

Abstract


In the present paper we introduce generalized extended $C$-Bochner curvature
tensor on $(\grave{k},\grave{\mu})$-contact metric manifolds. Also, we study
$\grave{\hbar}$-generalized extended $C$-Bochner semisymmetric and $\psi $%
-generalized extended $C$-Bochner semisymmetric non-Sasakian $(\grave{k},%
\grave{\mu})$-contact metric manifolds.


Keywords

contact metric manifolds, curvature tensor, semisymmetry conditions

Full Text:

PDF

References


K. Arslan, C. Murathan, C. ¨Ozg¨ur and A. Yıldız: Contact metric R-harmonic manifolds. Balkan J. of Geom. and its Appl. 5 (2000), 1-6.

D. E. Blair: On the geometric meaning of the Bochner Tensor. Geom. Dedicata 4 (1975), 33-38.

D. E. Blair, T. Koufogiorgos and B. J. Papantoniou: Contact metric

manifolds satisfying a nullity condition. Israel Journal of Math. 91 (1995), 189-214.

D. E. Blair: Two remarks on contact metric structures. Tˆohoku Math. J. 29 (1977), 319-324.

S. Bochner: Curvature and Betti numbers. Ann.of Math. (2) 50 (1949), 77-93.

E. Boeckx: A full classification of contact metric (`k, `μ)-spaces. Illinois J. Math. 44 (2000), 212-219.

E. Boeckx, P. Buecken and L. Vanhecke: φ-symmetric contact metric spaces. Glasgow Math. J. 41 (1999), 409-416.

U. C. De, A. A. Shaikh and S. Biswas: On φ-recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2003), 13-48.

H. Endo: On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor. Colloq. Math. Vol. LXII no. 2 (1991), 293-297.

I. Hasegawa and T. Nakane: On Sasakian manifolds with vanishing contact Bochner curvature tensor II. Hokkaido Math. J. 11 (1982), 44-51.

T. Ikawa and M. Kon: Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature. Colloq. Math. 37 (1977), 113-122.

O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying Rcur(X, Y ) · Rcur = 0. Czechoslovak Math. J. 46 (1996), 427-474.

M. Matsumoto and G. Ch¯uman: On the C-Bochner curvature tensor. TRU Math. 5 (1969), 21-30.

B. J. Papantoniou: Contact Riemannian manifolds satifying Rcur(ξ,X) · Rcur = 0 and ξ ∈ (`k, `μ)-nullity distribution. Yokohama Math. J. 40 (1993), 149-161.

T. Takahashi: Sasakian φ-symmetric spaces. Tohoku Math. J. 29 (1977), 91-113.

A. A. Shaikh and K. K. Baishya: On (`k, `μ)-contact metric manifolds. Diff. Geom.- Dynm. System 8 (2006), 253-261.

Z. I. Szabo: Structure theorems on Riemannian manifolds satisfying Rcur(X, Y ) · Rcur = 0, I. Local version, J. Diff. Geo. 17 (1982), 531-582.

S. Tanno: Ricci Curvatures of Contact Riemannian manifolds. Tˆohoku Math. J. 40 (1988), 441-448.




DOI: https://doi.org/10.22190/FUMI240522039Y

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)