EXAMINING SINGULAR DISSIPATIVE QUANTUM STURM–LIOUVILLE OPERATORS IN LIMIT-CIRCLE CASE WHENEVER q > 1

Bilender P. Allahverdiev, Yelda Aygar

DOI Number
https://doi.org/10.22190/FUMI240626042A
First page
597
Last page
614

Abstract


In this article, we examine dissipative singular quantum (q) Sturm–Liouville operators (q > 1) acting in a suitable Hilbert space, where the extensions of a minimal symmetric operator in limit-circle case (with deficiency indices (2, 2)) are presented. We create a self-adjoint dilation of the dissipative operator along with its incoming and outgoing spectral representations. These constructions enable us to find the scattering matrix of the dilation using the Weyl–Titchmarsh function associated with a self-adjoint q-Sturm–Liouville operator . Additionally, we establish a functional model for the dissipative operator and derive its characteristic function using the scattering matrix of the dilation (or the Weyl–Titchmarsh function). We prove theorems related to the completeness of the system of eigenfunctions and associated functions (root functions) for both dissipative and accumulative q-Sturm–Liouville operators.


Keywords

q-Sturm–Liouville equation, dissipative operator, self-adjoint dilation, Weyl–Titchmarsh function, characteristic function, completeness of the root functions.

Full Text:

PDF

References


K. A. Aldwoah, A. B. Malinowska and D. F. M. Torres: The power quantum calculus and variational problems. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorith. 19 (2012), 93-116.

B. P. Allahverdiev: Dissipative Sturm–Liouville operators in limit-point case. Acta Appl. Math. 86 (3) (2005), 237-248.

B. P. Allahverdiev: Nonself-adjoint Sturm–Liouville operators in limit-circle case. Taiwan. J. Math. 16 (6) (2012), 2035-2052.

B. P. Allahverdiev: Spectral problems of dissipative singular q-Sturm–Liouville operators in limit-circle case. Filomat 36 (9) (2022), 2891-2902.

B. P. Allahverdiev: Spectral problems of non-self-adjoint q-Sturm–Liouville operators in limit-point case. Kodai Math. J. 39 (2016), 1-15.

B. P. Allahverdiev and H. Tuna: An expansion theorem for q-Sturm-Liouville operators on the whole line. Turkish J. Math. 42 (2018), 1060-1071.

B. P. Allahverdiev and H. Tuna: Limit-point criteria for q-Sturm–Liouville equations. Quaest. Math. 42 (10) (2019), 1291-1299.

B. P. Allahverdiev and H. Tuna: On the Bari basis properties of the root functions of non-self-adjoint q-Sturm–Liouville problems. Uzbek Math. J. 2020 (4) (2020), 11-21.

M. A. Al-Towailb: A q-fractional approach to the regular Sturm-Liouville problems. Electron. J. Diff. Equ. 88 (2017), 13pp.

M. H. Annaby and Z. S. Mansour: q-Fractional Calculus and Equations. Lectures Notes in Mathematics 2056, Springer, Heidelberg, 2012.

M. H. Annaby, H. A. Hassan and Z. S. Mansour: Sampling theorems associated with singular q-Sturm–Liouville problems. Result. Math. 62 (1-2) (2012), 121-136.

M. H. Annaby, Z. S. Mansour and I. A. Soliman: q-Titchmarsh–Weyl theory: series expansion. Nagoya Math. J. 205 (2012), 67-118.

M. H. Annaby and Z. S. Mansour: Basic Sturm–Liouville problems. Phys. A. Math. Gen. 38 (17) (2005), 3775-3797.

Y. Aygar and E. Bairamov: Scattering theory of impulsive Sturm-Liouville equation in quantum calculus. Bull. Malays. Math. Sci. Soc. 42(6)(2019), 3247-3259.

N. Dunford and J. T. Schwartz: Linear operators, Part II. Interscience, New York, 1964.

A. Eryilmaz and H. Tuna: Spectral theory of dissipative q-Sturm–Liouville problems. Studia Sci. Math. Hungar. 51 (3) (2014), 366-383.

H. Exton: q-Hipergeometric Functions and Applications. Ellis-Horwood, Chichester, 1983.

W. Hahn: Beiträge zur Theorie der Heineschen Reihen. Math. Nachr. 2 (1949), 340-379.

H. A. Isayev and B. P. Allahverdiev: Sel-adjoint and non-self-adjoint extensions of symmetric q-Sturm–Liouville operators. Filomat 37 (24) (2023), 8057-8066.

F. H. Jackson: On q-definite integrals. Quart. J. Pure Appl. Math. 41 (1910), 193–203.

F. H. Jackson: q-difference equations. Amer. J. Math. 32 (1910), 305-314.

V. Kac and P. Cheung: Quantum Calculus. Universitext. Springer-Verlag, New York, 2002.

D. Karahan and K. R. Mamedov: Sampling theory associated with q-Sturm-Liouville operator with discontinuity conditions. J. Contemp. Appl. Math. 10 (2020), 40-48.

N. Palamut Kosar: The Parseval identity for q-Sturm-Liouville problems with transmission conditions. Adv. Difference Equ. 2021(251) (2021), 12pp.

A. Kuzhel: Characteristic Functions and Models of Nonself-Adjoint Operators. Kluwer Acad. Publ., Dordrecht, 1996.

A. Lavagno: Basic-deformed quantum mechanics. Rep. Math. Phys.64 (2009), 79-91.

P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press, New York, 1967.

Z. S. I. Mansour: On fractional q-Sturm–Liouville problems. J. Fixed Point Theory Appl. 19(2) (2017), 1591–1612.

A. Matsuo: Jackson integrals of Jordan–Pochhammer type and quantum Knizhnik Zamolodchikov equations. Comm. Math. Phys. 151(2) (1993), 263–273.

B. Sz.-Nagy and C. Foias¸: Analyse Harmonique des Operateurs de L′espace de Hilbert. Masson, Paris, and Akad. Kiad´o, Budapest 1967; English transl. North-Holland, Amsterdam, and Akad. Kiad´o, Budapest, 1970.

M. A. Naimark: Linear Differential Operators. 2nd edn, Moscow, Nauka, 1969; English transl. of 1st edn, Parts 1, 2: Ungar, New York, 1967, 1968.

B. S. Pavlov: Irreversibility, Lax–Phillips approach to resonance scattering and spectral analysis of non-self-adjoint operators in Hilbert space. Int. J. Theor. Phys. 38 (1999), 21-45.

B. S. Pavlov: Spectral analysis of a dissipative singular Schr¨odinger operator in terms of a functional model. Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 65 (1991), 95-163; English transl. Partial Differential Equations VIII, Encyc. Math. Sci. 65 (1996), 87-153.

J. Tariboon and S. K. Ntouyas: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Difference Equ. 2013:282 (2013), 19 pp.




DOI: https://doi.org/10.22190/FUMI240626042A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)