THE IMPACT OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A 3-DIMENSIONAL RIEMANNIAN MANIFOLD ADMITTING SOLITONS

Ansari Rakesh Baidya, Abul Kalam Mondal

DOI Number
https://doi.org/10.22190/FUMI240703044B
First page
645
Last page
654

Abstract


This article carries out the investigation of a 3-dimensional Riemannian manifold M^3 endowed with a semi-symmetric type of non-metric connection. After introduction, we provide the basic results of semi-symmetric non-metric connection. Next we investigate gradient η- Ricci solitons and gradient Ricci-Yamabe solitons with respect to semi-symmetric non-metric connection and obtain several interesting results.

Keywords

Riemannian manifolds, gradient η−Ricci solitons, gradient Ricci-Yamabe solitons

Full Text:

PDF

References


S. Agashe and M.R. Chafle: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23 (1992), 399–409.

A. M. Blaga: η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 30 (2016), 489-496.

J. T. Cho and M. Kimura: Ricci Solutions and real hypersurfaces in a complex space form. Tohoku Math. J. 61, no. 2 (2009), 205-212.

L. Das, U. C. De , R.N. Singh and M. K. Pandey: Loretzian nmanifold admitting a type of semi-symmetric non-metric connection. 70 (2008), 78-85.

A. De: On almost pseudo symmetric manifolds admitting a type of semi-symmetric non-metric connection. Acta Math. Hungar 125 (1-2) (2009), 183–190.

K. De, U. C. De and A. Gezer: Investigation on a Riemannian manifold with a semi-symmetric non-metric connection and gradient solitons . Kraguevac Journal of Mathematics 49 (3)(2025), 387–400.

K. De and U. C. De: A note on gradient Solitons on two classes of almost Kenmotsu Manifolds. International Journal of Geometric Methods in Modern Physics, 19 (2022) 2250213 (12 pages).

K. De and U. C. De: δ-almost Yamabe solitons in paracontact metric manifolds. Mediterr. J. Math. 18, 218 (2021).

U. C. De, K. De and S. Güler: Characterizations of a Lorentzian Manifold with a semi-symmetric metric connection. Publ. Math. Debrecen, 104 3-4 (2024), 329–341.

U. C. De and G. C. Ghosh: On generalized quasi-Einstein manifolds. Kyung-pook Math. J. 44 (2004), 607-615.

U. C. De, A. Sardar and K. De: Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds . Turk. J. Math. 2022(46), 1078-1088.

Y. Dogru: η-Bourguignon solitons with a semi-symmetric metric and semisymmetric metric non-metric connection . AIMS Math. 8(2023), no. 5, 11943-11952.

Y. Dogru, C. Özgür, and C. Murathan: Riemannian manifolds with a semisymmetric non-metric connection satisfying some semisymmetry conditions. Bull. Math. Anal. Appl. 3 (2)(2011), 206–212.

A. Friedmann and J. A. Schouten: Über die geometric der holbsymmetrischen Ubertragurgen. Math. Zeitschr. 21 (1924), 211–233.

S. Golab: On semi-symmetric and quarter-symmetric linear connections. Tensor (N. S.) 29 (1975), 249–254.

S. Guler and M. Crasmareanu: Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish Journal of Mathematics 43 (2019), 2631-2641.

R. S. Hamilton: The Ricci flow on surfaces. Contemp. Math. 71 (1988), 237–261.

R. S. Hamilton: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17 (1982), 255-306.

H. A. Hayden: Subspace of space with torsion. Proc. Lon. Math. Soc. 34 (1932), 27–50.

M. A. Lone and I. F. Harry: On Ricci solitons with quarter-symmetric connection. Ricerche di Matematica (2024), 1-15.

C. Özgür: On Ricci solitons with a semi-symmetric metric connection. Filomat 35 (2021), no. 11,3635–3641.

C. Özgür and S. Sular: Warped products with a semi-symmetric non-metric connection. Arab J. Math. Sci. 36 (2011), 461–473.

K. Yano: On semi-symmetric metric connection. Revue Roumaine de Math. Pureset Appliques. 15 (1970), 1579–1586.




DOI: https://doi.org/10.22190/FUMI240703044B

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)