RICCI SOLITONS AND RICCI BI-CONFORMAL VECTOR FIELDS ON THE MODEL SPACE $Sol^{4}_{0}$
Abstract
Keywords
Full Text:
PDFReferences
P. Atashpeykar and A. Haji-Badali: The algebraic Ricci solitons of Lie group H2 ×R and Sol3. Journal of Finsler Geometry and its Applications, 1(2) (2020), 105–114.
S. Azami and U. C. De: Ricci bi-conformal vector fields on Lorentzian fivedimensional two-step nilpotent Lie groups. Hacet. J. Math. Stat. (2023), 10.15672/hujms. 1294973.
S. Azami and G. Fasihi-Ramandi: Ricci bi-conformal vector fields on Siklos spacetimes. Mathematics. Interdisciplinary research, 9(1) (2024), 45–76.
S. Azami and M. Jafari: Ricci bi-conformal vector fields on homogeneous Gödel-type spacetimes. J. nonlinear Math. Phys. 30 (2023), 1700–1718.
S. Azami and M. Jafari: Ricci solitons and Ricci bi-conformal vector fields on H2×R. Report on mathematical physics, 93(2) (2024), 231–239.
M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio and S. Gavino-Fernandez: Three-dimensional Lorentzian homogeneous Ricci solitons. Israel J. Math., 188 (2012), 385–403.
U. C. De, A. Sardar and A. Sarkar: Some conformal vector fields and conformal Ricci solitons on N(k)-contact metric manifolds. AUT J. Math. Com., 2(1) (2021), 61–71.
S. Deshmukh: Geometry of Conformal Vector Fields. Arab. J. Math., 23(1) (2017), 44–73.
S. Deshmukh and F. R. Al-Solamy: Conformal Vector Fields on a Riemannian Manifold. Balkan Journal of Geometry and its Application, 19(2) (2014), 86–93.
Z. Erjavec: Geodesics and Translation Curves in Sol40. Mathematics, 11 (2023), 1533.
Z. Erjavec and J. Inoguchi: Minimal submanifolds in Sol4
J. Geom. Anal. 117(156) (2023).
Z. Erjavecand J. Inoguchi: J-trajectories in 4-dimensional solvable Lie groups Sol40. Journal of Nonlinear Science, 33(111) (2023).
R. Filipkiewicz: Four dimensional geometries. Ph.D. Thesis, University of Warwick, (1983).
W. Graf: Ricci flow gravity. PMC Phys. 3 (2007).
A. Garcia-Parrado and J. M. M. Senivilla: Bi-conformal vector fields and their applications. Classical and Quantum Gravity, 21(8) (2004), 2153–2177.
R. S. Hamilton: The Ricci flow on surfaces. Contemp. Math, 71 (1988), 237–261.
V. G. Ivancevic and T. T. Ivancevic: Ricci flow and nonlinear reaction-diffusion systems in biology. chemistry, and physics. Nonlinear PS, 1 (2011), 35–54.
M. D’haene, J. I. Inguchi and J. V. D. Veken: Parallel and totally umbilical hypersurfaces of the four-dimensional Thurston geometry Sol40. Mathematische Nachrichten, 1 (2023).
M. Sohrabpour and S. Azami: Ricci bi-conformal vector fields on Lorentzian Walker manifolds of low dimension. Lobachevskii Journal of mathematics, 44(12) (2023), 5437-5443.
E. Moln´ar and B. K. Szilagyi: Translation curves and their spheres in homogeneous geometries. Publ. Math. Debrecen, 78(2) (2011), 327–346.
R. S. Sandhu, T. T. Georjiou and A. R. Tannenbaum: Ricci curvature: An economic indicator for market fragility and system risk. Sci. Adv. 2(5) (2016).
P. Scott: The geometries of 3-manifolds. Bull. London Math, 15 (1983), 15, 401–487.
W. P. Thurston: Three-dimensional geometry and topology I. Princeton Math. Series, (S. Levy ed.), Princeton University Press, 1 (1997), 1–328.
C. T. C. Wall: Geometric structures on compact complex analytic surfaces. Topology, 25(2) (1986), 119–153.
Y. Wang, X. Gu, T. F. Chan, P. M. Thompson and S. T. Yau: Brain surface conformal parametrization with the Ricci flow. IEEE Trans. Med. Imaging, 31(2), (2012), 251–264.
K. Yano: Integral formulas in Riemannian geometry. M. Dekker, (1970), ISBN 0824718070, 9780824718077.
DOI: https://doi.org/10.22190/FUMI240731045S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)