ON THE STABILITY OF GENERALIZED S-SPACE FORMS WITH TWO STRUCTURE VECTOR FIELDS

Crina-Daniela Neacsu, Gabriel-Eduard Vilcu

DOI Number
https://doi.org/10.22190/FUMI240801052N
First page
785
Last page
798

Abstract


The main purpose of this work is to derive the conditions that ensure the stability of the generalized S-space forms with two structure vector fields. In addition, some particular conditions under which a generalized S-space form with two structure vector fields is unstable are obtained. Several consequences are also discussed at the end of the article.

Keywords

generalized S-space forms, two structure vector fields.

Full Text:

PDF

References


M. A. Akyol and B. Sahin: Conformal semi-invariant submersions. Commun. Contemp. Math. 19(2) (2017), 1650011.

M. A. Akyol and B. S¸ahin: Conformal slant Riemannian maps to Kahler manifolds. Tokyo J. Math. 42(1) (2019), 225–237.

P. Alegre, A. Carriazo, Y. H. Kim and D. W. Yoon: B.-Y. Chen’s inequality for submanifolds of generalized space forms. Indian J. Pure Appl. Math. 38(3) (2007), 185–201.

A. H. Alkhaldi, M. A. Khan, S. K. Hui and P. Mandal: Ricci curvature of semislant warped product submanifolds in generalized complex space forms. AIMS Math. 7(4) (2022), 7069–7092.

P. Baird and J. Wood: Harmonic Morphisms between Riemannian manifolds. Oxford University Press, Oxford (2003).

D. E. Blair: Geometry of manifolds with structural group U(n)×O(s). J. Differential Geometry 4 (1970), 155–167.

E. Boeckx and C. Gherghe: Harmonic maps and cosymplectic manifolds. J. Aust. Math. Soc. 76(1) (2004), 75–92.

D. Burns, F. Burstall, P. De Bartolomeis and J. Rawnsley: Stability of harmonic maps of Kahler manifolds. J. Differential Geom. 30(2) (1989), 579–594.

A. Carriazo and L. M. Fernandez: Induced generalized S-space-form structures on submanifolds. Acta Math. Hungar. 124(4) (2009), 385–398.

A. Carriazo, L. M. Fernandez and A. M. Fuentes: Generalized S-space-forms with two structure vector fields. Adv. Geom. 10(2) (2010), 205–219.

B.-Y. Chen: Recent developments in δ-Casorati curvature invariants. Turkish J. Math. 45(1) (2021), 1–46.

J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109–160.

H. Eichenherr: Geometrical analysis of integrable sigma models. Lecture Notes in Phys. 151, Springer-Verlag, Berlin-New York (1982).

L. M. Fernandez and A. M. Fuentes: Some relationships between intrinsic and extrinsic invariants of submanifolds in generalized S-space-forms. Hacet. J. Math. Stat. 44(1) (2015), 59–74.

D. Ganguly, S. Dey, A. Ali and A. Bhattacharyya: Conformal Ricci soliton and quasi-Yamabe soliton on generalized Sasakian space form. J. Geom. Phys. 169 (2021), Paper No. 104339, 12 pp.

C. Gherghe: Harmonic maps and stability on locally conformal Kahler manifolds. J. Geom. Phys. 70 (2013), 48–53.

C. Gherghe, S. Ianus and A.M. Pastore: CR-manifolds, harmonic maps and stability. J. Geom. 71(1–2) (2001), 42–53.

C. Gherghe and G.-E. Vilcu: Harmonic maps on locally conformal almost cosymplectic manifolds. Commun. Contemp. Math. 26(9) (2024), 2350052.

S. Ianus, R. Mazzocco and G.-E. Vilcu: Harmonic maps between quaternionic Kahler manifolds. J. Nonlinear Math. Phys. 15(1)(2008), 1–8.

R. Kaushal, G. Gupta, R. Sachdeva and R. Kumar: Conformal slant Riemannian maps with totally umbilical fibers. Mediterr. J. Math. 20 (2023), 44.

Y. Li, A. H. Alkhaldi and A. Ali: Geometric mechanics on warped product semislant submanifold of generalized complex space forms. Adv. Math. Phys. 2021 (2021), Art. ID 5900801, 15 pp.

M. A. Lone and I. F. Harry: A characterization of Ricci solitons in Lorentzian generalized Sasakian space forms. Nonlinear Anal. 239 (2024), Paper No. 113443, 8 pp.

E. Mazet: La formule de la variation secondere de lenergie au voisinage dun application harmonique. J. Differential Geom. 8 (1973), 279–296.

C. W. Misner: Harmonic maps as models for physical theories. Phys. Rev. D 18 (1978), 4510.

Y. Ohnita: On pluriharmonicity of stable harmonic maps. J. Lond. Math. Soc. 2 (1987), 563–568.

C.-D. Neacsu: On the stability of T-space forms. J. Geom. Phys. 199 (2024), 105162.

D. Perrone and L. Vergori: Stability of contact metric manifolds and unit vector fields of minimum energy. Bull. Austral. Math. Soc. 76(2) (2007), 269–283.

A. Prieto-Martin, L. M. Fernandez and A. M. Fuentes: Generalized S-spaceforms. Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 151–161.

N. A. Rehman: Harmonic maps and stability on Lorentzian para Sasakian manifolds. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 23(2) (2022), 101–106.

N. A. Rehman: Stability on generalized Sasakian space forms. Math. Rep. 17(67(1)) (2015), 57–64.

N. A. Rehman: Stability on S-space form. Indian J. Pure Appl. Math. 50(4) (2019), 1087–1096.

B. Sahin: Horizontally conformal submersions of CR-submanifolds. Kodai Math. J. 31 (2008), 46–53.

B. Sahin: Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications. Elsevier/Academic Press, London (2017).

B. Sahin: Slant Riemannian maps to Kaehler manifolds. Int. J. Geom. Methods Mod. Phys. 10(2) (2013), 1–12.

N. Sanchez: Harmonic maps in general relativity and quantum field theory. Harmonic mappings, twistors, and σ-models. Adv. Ser. Math. Phys. 4, World Scientific Publishing Co., Singapore (1998).

R. T. Smith: The second variation formula for harmonic mappings. Proc. Amer. Math. Soc. 47 (1975), 229–236.

S. K. Srivastava and A. Kuma: Geometric inequalities of bi-warped product submanifold in generalized complex space form. J. Geom. Phys. 199 (2024), Paper No. 105141, 14 pp.

G. Toth: Harmonic and minimal maps: with applications in geometry and physics. Series in Mathematics and its Applications, Chichester: Ellis Horwood Limited, New York (1984).

S. Uddin, M. S. Lone and M. A. Lone: Chen’s δ-invariants type inequalities for bi-slant submanifolds in generalized Sasakian space forms. J. Geom. Phys. 161 (2021), Paper No. 104040, 8 pp.

H. Urakawa: Calculus of variations and harmonic maps. American Mathematical Society, Providence, Rhode Island (1993).

G.-E. Vilcu: Horizontally conformal submersions from CR-submanifolds of locally conformal Kahler manifolds. Mediterr. J. Math. 17 (2020), 26.

Y. Wang and P. Wang: Parallelism of structure Lie operators on real hypersurfaces in nonflat complex space forms. Mediterr. J. Math. 21(1)(2024), Paper No. 8, 16 pp.

Y. Wang and P. Wang: Real hypersurfaces in nonflat complex space forms whose h-operator is parallel with respect to the generalized Tanaka-Webster connection. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 118(4) (2024), 143.

T. A. Wani and M. A. Lone: Horizontally conformal submersions from CRsubmanifolds of locally conformal quaternionic Kaehler manifolds. Mediterr. J. Math. 19 (2022), 114.

K. Yano: On a structure defined by a tensor field f of type (1; 1) satisfying f3+f = 0. Tensor (N.S.) 14 (1963), 99–109.




DOI: https://doi.org/10.22190/FUMI240801052N

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)