CHARACTERISTICS OF RANDERS METRICS OF ISOTROPIC PROJECTIVE RICCI CURVATURE
Abstract
In this paper, we delve into the exploration of projective Ricci curvature, with a specific focus on characterizing Finsler metrics possessing isotropic projective Ricci curvature and isotropic S-curvature. Notably, our investigation reveals a compelling result: every Randers metric featuring isotropic S-curvature and constant projective Ricci curvature emerges as a weak Einstein metric. Furthermore, we pinpoint the conditions under which such a metric exhibits isotropic projective Ricci curvature. Remarkably, on a closed Einstein Randers manifold, we establish that being PRic-flat is equivalent to being Ric-flat. This intriguing equivalence sheds light on the intricate interplay between projective and Riemannian geometry, offering valuable insights into the geometric structures underlying Finsler metrics.
Keywords
Full Text:
PDFReferences
H. Akbar-zadeh : Champ de vecteurs projectifs sur le fibre unitaire. J. Math. Pures Appl. 65(1) (1986), 986.
P. L. Antonelli and R. S. Ingarden and M. Matsumoto: The theory of sprays and Finsler spaces with applications in physics and biology. Springer Science Business Media, Vol. 58, 1993.
S. Bacso and I. Papp : A note on generalized douglas space. Per. Math. Hungarica. 48(1) (2004), 181-184.
D. Bao and C. Robles : on Ricci curvature and flag curvature in finsler geometry. A sampler of Riemann-Finsler geometry. 50 (2004), 197-259.
X. Cheng and B. Rezaei : Erratum and addendum to the paper:”on a class of projective Ricci flat finsler metrics”. Publ. Math. Debrecen. 93 (2018), 1-2.
X. Cheng and Y. Shen and X. Ma : On a class of projective Ricci flat finsler metrics. Publ. Math. Debrecen. 7528 (2017), 1-12.
X. Cheng and Z. Shen: Finsler geometry. An approach via Randers spaces. Springer and Science press, Newyork- Heidelberg- Beijing, 2012.
S. S. Chern and Z. Shen: Riemann-finsler geometry. Nankai Tracts in Math, Vol. 6, World Scientific Co., Singapore, 2005.
M. Gabrani and B. Reaei and E. Sevim Sengelen : On projective invariants of general spherically symmetric finsler spaces in Rn. Diff. Geom. Appl. 82 (2022), 101869.
M. Gabrani and E. Sevim Sengelen and Z. Shen : Some projectively Ricci-flat (α, β)-metrics. Per. Math. Hungarica. 86(2) (2023), 514-529.
L. Ghasemnezhad and B. Rezaei and M. Gabrani : On isotropic projective Ricci curvature of C-reducible finsler metrics. Turkish J. Math. 43(3) (2019), 1730-1741.
P. Joharinad: Warped product Finsler manifolds from Hamiltonian point of view. Int. J. Geom. Meth. Modern. Phys. 14(02) (2017), 1750029.
B. Najafi and A. Tayebi: A new quantity in Finsler geometry. Comptes Rendus Math. 349(1-2) (2011), 81–83.
C. Robles: Einstein metrics of Randers type. Ph. D. Thesis, University of British, Columbia, 2003.
Z. Shen: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128(2) (1997), 306-328.
Z. Shen: Differential Geometry of Spray and Finsler Spaces. Springer Science Business Media, 2013.
A. Tayebi and H. Sadeghi : On generalized Douglas-Weyl (α, β)-metrics. Acta. Math. Sin., English Series. 31(10) (2015), 1611-1620.
Z. Shen and L. Sun: On the Projective Ricci curvature. Sci. China Math. 64 (2021), 1629-1636.
H. Zhu: On a class of projectively Ricci-flat Finsler metrics. Diff. Geom. Appl. 73 (2020), 101680.
H. Zhu and H. Zhang: Projective Ricci flat spherically symmetric Finsler metrics. Int. J. Math. 29(11) (2018), 1850078.
DOI: https://doi.org/10.22190/FUMI240802046S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)