CHARACTERISTICS OF RANDERS METRICS OF ISOTROPIC PROJECTIVE RICCI CURVATURE

Shabnam Samadi, Parvaneh Joharinad, Bahman Rezaei

DOI Number
https://doi.org/10.22190/FUMI240802046S
First page
671
Last page
682

Abstract


In this paper, we delve into the exploration of projective Ricci curvature, with a specific focus on characterizing Finsler metrics possessing isotropic projective Ricci curvature and isotropic S-curvature. Notably, our investigation reveals a compelling result: every Randers metric featuring isotropic S-curvature and constant projective Ricci curvature emerges as a weak Einstein metric. Furthermore, we pinpoint the conditions under which such a metric exhibits isotropic projective Ricci curvature. Remarkably, on a closed Einstein Randers manifold, we establish that being PRic-flat is equivalent to being Ric-flat. This intriguing equivalence sheds light on the intricate interplay between projective and Riemannian geometry, offering valuable insights into the geometric structures underlying Finsler metrics.


Keywords

Finsler metric, Randers metric, Projective Ricci curvature, Weak Einstein metrics

Full Text:

PDF

References


H. Akbar-zadeh : Champ de vecteurs projectifs sur le fibre unitaire. J. Math. Pures Appl. 65(1) (1986), 986.

P. L. Antonelli and R. S. Ingarden and M. Matsumoto: The theory of sprays and Finsler spaces with applications in physics and biology. Springer Science Business Media, Vol. 58, 1993.

S. Bacso and I. Papp : A note on generalized douglas space. Per. Math. Hungarica. 48(1) (2004), 181-184.

D. Bao and C. Robles : on Ricci curvature and flag curvature in finsler geometry. A sampler of Riemann-Finsler geometry. 50 (2004), 197-259.

X. Cheng and B. Rezaei : Erratum and addendum to the paper:”on a class of projective Ricci flat finsler metrics”. Publ. Math. Debrecen. 93 (2018), 1-2.

X. Cheng and Y. Shen and X. Ma : On a class of projective Ricci flat finsler metrics. Publ. Math. Debrecen. 7528 (2017), 1-12.

X. Cheng and Z. Shen: Finsler geometry. An approach via Randers spaces. Springer and Science press, Newyork- Heidelberg- Beijing, 2012.

S. S. Chern and Z. Shen: Riemann-finsler geometry. Nankai Tracts in Math, Vol. 6, World Scientific Co., Singapore, 2005.

M. Gabrani and B. Reaei and E. Sevim Sengelen : On projective invariants of general spherically symmetric finsler spaces in Rn. Diff. Geom. Appl. 82 (2022), 101869.

M. Gabrani and E. Sevim Sengelen and Z. Shen : Some projectively Ricci-flat (α, β)-metrics. Per. Math. Hungarica. 86(2) (2023), 514-529.

L. Ghasemnezhad and B. Rezaei and M. Gabrani : On isotropic projective Ricci curvature of C-reducible finsler metrics. Turkish J. Math. 43(3) (2019), 1730-1741.

P. Joharinad: Warped product Finsler manifolds from Hamiltonian point of view. Int. J. Geom. Meth. Modern. Phys. 14(02) (2017), 1750029.

B. Najafi and A. Tayebi: A new quantity in Finsler geometry. Comptes Rendus Math. 349(1-2) (2011), 81–83.

C. Robles: Einstein metrics of Randers type. Ph. D. Thesis, University of British, Columbia, 2003.

Z. Shen: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128(2) (1997), 306-328.

Z. Shen: Differential Geometry of Spray and Finsler Spaces. Springer Science Business Media, 2013.

A. Tayebi and H. Sadeghi : On generalized Douglas-Weyl (α, β)-metrics. Acta. Math. Sin., English Series. 31(10) (2015), 1611-1620.

Z. Shen and L. Sun: On the Projective Ricci curvature. Sci. China Math. 64 (2021), 1629-1636.

H. Zhu: On a class of projectively Ricci-flat Finsler metrics. Diff. Geom. Appl. 73 (2020), 101680.

H. Zhu and H. Zhang: Projective Ricci flat spherically symmetric Finsler metrics. Int. J. Math. 29(11) (2018), 1850078.




DOI: https://doi.org/10.22190/FUMI240802046S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)