ON A GENERALIZED VERSION OF $m$-TOPOLOGY AND $U$-TOPOLOGY IN THE OVER-RING $C(X)_{_{\Delta}}$ OF $C(X)$

Rudra Pratap Saha, Ritu Sen

DOI Number
https://doi.org/10.22190/FUMI240807047S
First page
683
Last page
695

Abstract


In this paper, we generalize the $m$-topology and the $U$-topology of $C(X)$ to its over-ring $C(X)_{_{\Delta}}$. The generalized versions will be referred to as the $m_{_{I}}^{^{\Delta}}$-topology and the $u_{_{I}}^{^{\Delta}}$-topology respectively. We define $A^\Delta_I=\{f\in C(X)_{_{\Delta}}: |f(x)|\leq M$, for all $x\in Z\setminus H$, for some $Z\in Z_{_\Delta}(I)$ and $H\in \Delta\}$, which turns out to be the component of $\underline 0$ in $C(X)_{_{\Delta}}$ with the $u^{^{\Delta}}_{_{I}}$-topology. Next we define $I_{\psi_{\Delta}}(X)=\{f\in C(X)_{_{\Delta}}: |fg(x)|\leq M$, for all $g\in C(X)_{_{\Delta}}$ and for all $x\in Z\setminus H$, for some $Z\in Z_{_\Delta}(I)$ and $H\in \Delta\}$. This set will be seen to play a key role in determining the connected ideals in $C(X)_{_{\Delta}}$ with the $m_{_{I}}^{^{\Delta}}$-topology. It is observed that $C(X)_{_{\Delta}}$ with the $m_{_{I}}^{^{\Delta}}$-topology is a topological ring, whereas $C(X)_{_{\Delta}}$ with the $u_{_{I}}^{^{\Delta}}$-topology is not so. Finally we give several necessary and sufficient conditions for the coincidence of the $u^{^{\Delta}}_{_{I}}$-topology and the $m^{^{\Delta}}_{_{I}}$-topology on $C(X)_{_{\Delta}}$.

Keywords

$C(X)_{_{\Delta}}$, $u^{^{\Delta}}_{_{I}}$-topology, $m^{^{\Delta}}_{_{I}}$-topology

Full Text:

PDF

References


F. Azarpanah, F. Manshoor and R. Mohamadian: Connectedness and compactness in C(X) with the m-topology and generalized m-topology. Topol. Appl. 159 (16) (2012) 3486-3493.

R. Bharati, A. DebRay, S. K. Acharyya and S. Acharyya: A generalization of topology of uniform convergence on C(X). Topol. Appl. 310 (2022) 108041.

E. K van Douwen: Nonnormality or hereditary paracompactness of some spaces of real functions. Topol. Appl. 39 (1) (1991) 3–32.

R. Engelking: General Topology. Sigma series in Pure Mathematics, v. 6, 1989.

L. Gillman and M. Jerison: Rings of Continuous Functions. Springer, London. (1976).

J. Gomez-P´erez and W.W. McGovern: The m-topology on Cm(X) revisited. Topol. Appl. 153 (2006) 1838–1848.

E. Hewitt: Rings of real-valued continuous functions I. Trans. Amer. Math. Soc. 48 (64) (1948) 54–99.

G. Di Maio, L. Hol´a, D. Hol´y and D. McCoy: Topology on the space of continuous functions. Topol. Appl. 86 (1998) 105–122.

R. P. Saha: More on the rings C(X)Δ and C∗(X)Δ. (communicated).

R. Sen and R. P. Saha: On an over-ring C(X)Δ of C(X). Facta Univ. Ser. Math. Inform. 39 (4) (2024) 721-744.




DOI: https://doi.org/10.22190/FUMI240807047S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)