ON A GROUP APPROACH TO THE STUDY OF THE GENERAL RELATIVISTIC VACUUM CONSTRAINT EQUATIONS
Abstract
In this article we will classify general relativistic vacuum constraint equations on a Riemannian manifold using a method based on the pointwise decomposition
of tensor products (reducible with respect to the action of the orthogonal group) into
irreducible components. Each selected class of equations will be described.
Keywords
Full Text:
PDFReferences
L. J. Alas, A. Romero and M. Sanchez: Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems. Thoku Math. J. 49 (1997), 337–345.
R. Avalos and J. H. Lira: The Einstein Constraint Equations. Brazil, Books in Bytes, (2021).
A. L. Besse: Einstein Manifolds. Springer-Verlag, Berlin & Heidelberg, (2008).
R. L. Bishop and S. I. Goldberg: A characterization of the Euclidean sphere. Bull. Amer. Math. Soc. 72 (1966), 122–124.
T. Branson: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151 (1997), 334–383.
S. Capozziello, G. Lambiase and C. Stornaiolo: Geometric classification of the torsion tensor in space-time. Ann. Phys. 10 (2001), 713–727.
A. Carlotto: The general relativistic constraint equations. Living Reviews in Relativity 24 (2021), 1–170.
P. T. Chru and E. Delay: On Mapping Properties of the General Relativistic Constraints Operator in Weighted Function Spaces, with Applications. Mmoires de la Socit Mathmatique de France, (2003).
N. S. Dairbekov and V. A. Sharafutdinov: On conformal Killing symmetric tensor fields on Riemannian manifolds. Siberian Adv. Math. 21 (2011), 1–41.
R. Garattini: Self sustained tranversable wormholes?. Class. Quant. Grav. 22 (2005), 2673–2682.
R. Gicquaud and A. Ngo: A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small T T-tensor. Class. Quant. Grav. 31 (2014), 195014.
A. Gray: Einstein-like manifolds which are not Einstein. Geom. Dedicate. 7 (1978), 259–280.
F. Helmut: Cauchy problems for the conformal vacuum field equations in General Relativity. Commun. Math. Phys. 91 (1983), 445–472.
D. Kramer, H. Stephani, M. Maccallum and E. Herl: Exact Solutions of the Einstein Field Solutions. Deutscher Verlag der Wissenschaften, Berlin, (1980).
C. A. Mantica, L. G. Molinary, Y. J. Suh and S. Shenawy: Perfect-fluid, generalized Robertson-Walker space-times, and Gray’s decomposition. J. Math. Phys. 60 (2019), 052506.
J. E. Marsden and F. J. Tipler: Maximal hypersurfaces and foliations of constant mean curvature in General Relativity. Phys. Rep. 66 (1980), 109–139.
J. Mikeš, E. Stepanova, A. Vanžurova´ at al.: Differential Geometry of Special Mappings. 2th Ed. Palacky University Press, Olomouc, (2019).
A. M. Naveira: A classification of Riemannian almost product manifolds. Rend. Mat. Appl. 3 (1983), 577–592.
P. Peterson: Riemannian Geometry (Graduate Texts in Mathematics Book 171). 3th Ed. Springer Int. Publishing AG, (2016).
R. Rani, S. B. Edgar and A. Barnes: Killing tensors and conformal Killing tensors from conformal Killing vectors. Thoku Math. J. 20 (2003), 1929–1942.
V. Rovenski, S. Stepanov and I. Tsyganok: The Bourguignon Laplacian and harmonic symmetric bilinear forms. Mathematics 8 (2020), Article number 83.
N. S. Sinyukov: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, (1979). (Russian).
S. E. Stepanov: On a group approach to studying the Einstein and Maxwell equations. Theor. Math. Phys. 111 (1997), 419–427.
S. E. Stepanov, I. A. Aleksandrova and I. I. Tsyganok: On symmetric Killing tensors and Codazzi tensors of ranks p ≥ 2. Progress in Mathematics (J. Math. Sci. (NY)) 276 (2023), 443–468.
S. E. Stepanov and I. G. Shandra: Harmonic diffeomorphisms of manifolds. St. Petersburg Math. J. 16 (2005), 401-412.
S. E. Stepanov and I. I. Tsyganok: Codazzi and Killing tensors on a complete Riemannian manifold. Math. Notes 109 (2021), 932–939.
S. E. Stepanov, I. I. Tsyganok and M. B. Khripunova: The Killing tensors on an n-dimensional manifold with SL(n; R)-structure. Acta Univ. Palacki. Olomuc. Math. 54 (2015), 95–105.
F. Tricerri and L. Vanhecke: Homogeneous structures. Progress in Mathematics (Differential geometry) 32 (1983), 234–246.
DOI: https://doi.org/10.22190/FUMI240813053M
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)