GEOMETRIC STRUCTURES ON THE CROSS SECTION IN THE TANGENT BUNDLE

Mohammad Nazrul Islam Khan, Lovejoy Das

DOI Number
https://doi.org/10.22190/FUMI240822049K
First page
717
Last page
724

Abstract


Our goal is to investigate the Lie derivative in the tangent bundle TM with regard to the complete and vertical lifts of almost para-contact structures by using partial differential equations. We study certain theorems about vector fields inTM that are almost analytic. Additionally, the complete lift of an almost product structure in TM is examined along the cross section.


Keywords

Tangent bundle, vertical lift, complete lift, partial differential equations, Lie derivative, almost analytic vector field, mathematical operators, cross-section

Full Text:

PDF

References


K. Yano and S. Ishihara. Almost complex structures induced in tangent bundles. Kodai Math. Sem. Rep., 19:1-27, 1967.

E. T. Davies. On the curvature of the tangent bundle. Annali di Mat. Pura ed Applicata, 81(1):193-204, 1969.

K. Yano and E. T. Davies. Metrics and connections in tangent bundle. Kodai Math. Sem. Rep., 23(4):493-504, 1971.

S. Ianus and C. Udriste. On the tangent bundle of a differentiable manifold. Stud. Cercet. Mat., 22:599-611, 1970.

K. Yano and S. Ishihara. Tangent and cotangent bundles. Marcel Dekker, Inc. New York, 1973.

T. Omran, A. Sharffuddin and S. I. Husain. Lift of structures on manifold. Publications De L’institut Mathematique (Beograd) (N.S.), 36(50):93-97, 1984.

L. S. Das, R. Nivas and M. N. I. Khan. On submanifolds of co-dimension 2 immersed in a Hsu-quaternion manifold. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 25(1):129-135, 2009.

M. N. I. Khan. Liftings from a Para-Sasakian manifold to its tangent bundles. Filomat, 37 (20), 6727-6740, 2023.

L. S. Das and R. Nivas. On certain structures defined on the tangent bundle. Rocky Mountain Journal of Mathematics, 36(6):1857-1866, 2006.

M. Tekkoyun. On lifts of paracomplex structures. Turk. J. Math., 30:197-210, 2006.

M. N. I. Khan. Tangent bundles endowed with semi-symmetric non-metric connection on a Riemannian manifold, Facta Universitatis, Series: Mathematics and Informatics 36 (4), 855-878, 2021.

M. N. I. Khan, S. K. Chaubey, N. Fatima and A. Al Eid, A. Metallic

structures for tangent bundles over almost quadratic ϕ-manifolds. Mathematics , 11, 4683, 2023. https://doi.org/10.3390/math11224683

M. N. I. Khan and J. B. Jun. Lorentzian almost r-para-contact structure in tangent bundle. Journal of the Chungcheong Mathematical Society, 27(1), 29-34, 2014.

M. N. I. Khan. Tensors and their applications. New Age International Publishers, India, 2006.

M. N. I. Khan. Quarter-symmetric semi-metric connection on Sasakian manifold. Tensor. New series 68 (2), 154-157, 2007.

M. N. I. Khan, U. C. De, L. S. Velimirovic. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 11, 53, 2023.

A. A. Salimov. Tensor operators and their applications, Nova Science Publ., New York, 2013.

S. Tanno. An almost complex structure of the tangent bundle of an almost contact manifold. Tohoku Math. J., 17, 7-15, 1965.

F. Ocak. Notes about tensor fields of type (1, 1) on the cross-section in the cotangent bundle. Transactions of NAS of Azerbaijan, Issue Mathematics, Series of Physical-Technical and Mathematical Sciences, 36(4):1-7, 2016.

S. Sasaki. On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10, 7-15, 1958.

S. Sasaki. On differentiate manifolds with certain structures which are closely related to almost contact structure I. Tohoku Math. J., 12, 459-476, 1960.

S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure II. Tohoku Math. J., 13, 281-294, 1961.

I. Sato, Almost analytic vector fields in almost complex manifolds. Tohoku Math. J., 17, 185-199, 1965.




DOI: https://doi.org/10.22190/FUMI240822049K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)