CANONICAL BIHOLOMORPHICALLY PROJECTIVE MAPPINGS OF GENERALIZED RIEMANNIAN SPACE IN THE EISENHART SENSE

Vladislava M. Milenković

DOI Number
https://doi.org/10.22190/FUMI240902057M
First page
851
Last page
861

Abstract


In this paper, canonical biholomorphically projective and equitorsion canonical biholomorphically projective mappings are defined. Some relations between corresponding curvature tensors of the generalized Riemannian spaces GRN and GRN are obtained. At the end, invariant geometric object of equitorsion canonical biholomorphically projective mapping is found.

Keywords

canonical biholomorphically projective mappings, curvature tensors, generalized Riemannian space.

Full Text:

PDF

References


V. E. Berezovski and J. Mikeš: Almost geodesic mappings of spaces with affine connection. J. Math. Sci. 207(3) (2015), 389–409.

M. S. Ćirić, M. Lj. Zlatanović, M. S. Stanković and Lj. S. Velimirović: On geodesic mappings of equidistant generalized Riemannian spaces. Applied Mathematics and Computation 218(12) (2012), 6648–6655.

L. P. Eisenhart: Generalized Riemannian spaces I. Proceeding of the National Academy of Sciences of the USA 37 (1951), 311–315.

L. P. Eisenhart: Non-Riemannian geometry. American Mathematical Society, New York (1927).

N. G. Konovenko, I. N. Kurbatova and E. Cventuh: 2F-planar mappings of pseudo-Riemannian spaces with f-structure. Proceedings of the International Geometry Center 11(1) (2018), 39–51 (in Ukrainian).

J. Mikeš: Holomorphically projective mappings and their generalizations. J. Math. Sci. N. Y. 89(3) (1998), 1334–1353.

V. M. Milenković and M. Lj. Zlatanović: Biholomorphically projective mappings of generalized Riemannian space in the Eisenhart sense. Quaestiones Mathematicae, 45(6) (2021), 979–991.

S. M. Minčić: Independent curvature tensors and pseudotensors of spaces with nonsymmetric affine connexion. Differential Geometry, Colloquia Mathematica Societatis Janos Bolayai, Budapest (Hungary) 31 (1979), 445–460.

S. M. Minčić and M. S. Stanković: Equitorsion geodesic mappings of generalized Rimannian spaces. Publications de L’Institut Mathematique, 61(75) (1997), 97–104.

S. M. Minčić, M. S. Stanković and Lj. S. Velimirović: Generalized Riemannian spaces and spaces of non-symmetric affine connection. University of Niš, Faculty of Science and Mathematics, Niš (2013).

M. Prvanović: Four curvature tensors of non-symmetric affine connexion. In: Proc. Conf. “150 years of Lobachevski geometry”, pp. 199–205, Kazan (1976), Moscow (1977) (in Russian).

M. S. Stanković: Special equitorsion almost geodesic mappings of the third type of non-symmetric affine connection spaces. Applied Mathematics and Computation, 244 (2014), 695–701.

M. S. Stanković, S. M. Minčić and Lj. S. Velimirović: On equitorsion holomorphically projective mappings of generalized Kahlerian spaces. Czechoslovak Mathematical Journal 54(129) (2004), 701–715.

M. S. Stanković, S. M. Minčić and Lj. S. Velimirović: On holomorphically projective mappings of generalized Kahlerian spaces. Mat. Vesn. 54 (2002), 195–202.

M. S. Stanković, M. Lj. Zlatanović and Lj. S. Velimirović: Equitorsion holomorphically projective mappings of generalized Kahlerian space of the first kind. Czechoslovak Math. J. 60(3) (2010), 635–653.




DOI: https://doi.org/10.22190/FUMI240902057M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)