A FIXED POINT THEOREM FOR GENERALIZED CYCLIC CONTRACTIVE MAPPINGS IN B-METRIC SPACES
Abstract
The purpose of this paper is to introduce the notion of a generalized cyclic contractive mapping in $b$-metric~spaces by adding four terms $\cfrac{d(T^2x,x)+d(T^2x,Ty)}{2s}$, $d(T^2x,Tx)$, $d(T^2x,y)$, $d(T^2x,Ty)$ and state a fixed point theorem for this kind of mappings. Also, some corollaries are derived from this theorem. In addition, some examples are given to illustrate the obtained results.
Keywords
Keywords
Full Text:
PDFReferences
R.~P. Agarwal, M.~A. Alghamdi, and N.~Shahzad, emph{Fixed point theory for cyclic generalized contractions in
partial metric spaces}, Fixed Point Theory Appl. textbf{2012:40} (2012), 11
pages.
A.~Aghajani, M.~Abbas, and J.~R. Roshan, emph{Common fixed point of generalized weak contractive mappings in
partially ordered $b$-metric spaces}, Math. Slovaca textbf{64} (2014),
no.~4, 941 -- 960.
A.~Aghajani and R.~Arab, emph{Fixed points of
$(psi,phi, theta )$-contractive mappings in partially ordered $b$-metric
spaces and application to quadratic integral equations}, Fixed Point Theory
Appl. textbf{2013:245} (2013), 20 pages.
T.~V. An, N.~V. Dung, Z.~Kadelburg, and S.~Radenovi'{c},
emph{Various generalizations of metric
spaces and fixed point theorems}, Rev. R. Acad. Cienc. Exactas Fis. Nat.
Ser. A Mat. RACSAM (2014), 26 pages, DOI 10.1007/s13398-014-0173-7.
I.~A. Bakhtin, emph{The contraction principle in
quasimetric spaces}, Func. An., Ulianowsk, Gos. Fed. Ins. textbf{30}
(1989), 26 -- 37.
M.~Boriceanu, M.~Bota, and A.~Petrusel,
emph{Multivalued fractals in $b$-metric
spaces}, Cent. Eur. J. Math. textbf{8} (2010), no.~2, 367 -- 377.
L.~B. '{C}iri'{c}, emph{A generalization of Banach's
contraction principle}, Proc. Amer. Math. Soc. textbf{45} (1974), 267 --
S.~Czerwik, emph{Contraction mappings in $b$-metric
spaces}, Acta Math. Univ. Ostrav. textbf{1} (1993), 5 -- 11.
S.~Czerwik, emph{Nonlinear set-valued contraction
mappings in $b$-metric spaces}, Atti Semin. Mat. Fis. Univ. Modena
textbf{46} (1998), no.~2, 263 -- 276.
H.~Huang and S.~Xu, emph{Fixed point theorems of
contractive mappings in cone $b$-metric spaces and applications}, Fixed
Point Theory Appl. textbf{2012} (2012), 8 pages.
N.~Hussain, V.~Parvaneh, J.~R.~Roshan, and Z.~Kadelburg,
emph{Fixed points of cyclic weakly $(psi,
varphi, L,A,B)$-contractive mappings in ordered $b$-metric spaces with
applications}, Fixed Point Theory Appl. textbf{2013:256} (2013), 18 pages.
E.~Karapinar and K.~Sadarangani, emph{Fixed
point theory for cyclic $(varphi$-$psi)$-contractions}, Fixed Point Theory
Appl. textbf{2011:69} (2011), 8 pages.
W.~A. Kirk, P.~S. Srinivasan, and P.~Veeramani,
emph{Fixed points for mappings satisfying cyclical
contractive conditions}, Fixed Point Theory textbf{4} (2003), no.~1, 79 --
P.~Kumam, N.~V. Dung, and V.~T.~L. Hang, emph{Some
equivalences between cone $b$-metric spaces and $b$-metric spaces}, Abstr.
Appl. Anal. textbf{2013} (2013), 8 pages.
P.~Kumam, N.~V. Dung, and K.~Sitthithakerngkiet, emph{A
generalization of '{C}iri'{c} fixed point theorems}, Filomat (2014), 7
pages, to appear.
H.~K. Nashine, W.~Sintunavarat, and P.~Kumam,
emph{Cyclic generalized contractions and fixed point
results with applications to an integral equation}, Fixed Point Theory Appl.
textbf{2012:217} (2012), 13 pages.
V.~Parvaneh, J.~R. Roshan, and S.~Radenovi'{c}, emph{
Existence of tripled coincidence points in ordered $b$-metric
spaces and an application to a system of integral equations}, Fixed Point
Theory Appl. textbf{2013:130} (2013), 19 pages.
A.~C.~M. Ran and M.~C.~B. Reurings, emph{A
fixed point theorem in partially ordered sets and some applications to matrix
equations}, Proc. Amer. Math. Soc. textbf{132} (2003), no.~5, 1435 -- 1443.
J.~R. Roshan, V.~Parvaneh, S.~Sedghi, N.~Shobkolaei, and W.~Shatanawi,
emph{Common fixed points of almost
generalized $(psi,varphi)_s$-contractive mappings in ordered $b$-metric
spaces}, Fixed Point Theory Appl. textbf{2013:159} (2013), 23 pages.
W.~Shatanawi, A.~Pitea, and R.~Lazovi'{c}, emph{Contraction conditions using comparison functions on $b$-metric spaces}, Fixed Point Theory Appl. textbf{2014:135} (2014), 11 pages.
T.~Suzuki, emph{A generalized Banach contraction
principle that characterizes metric completeness}, Proc. Amer. Math. Soc.
textbf{136} (2008), no.~5, 1861 -- 1869.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)