SOME NEW Q-ESTIMATES FOR CERTAIN INTEGRAL INEQUALITIES
Abstract
In this paper, we consider a newly introduced class of convex functions that is eta-convex functions. We give some new quantum analogues for Hermite-Hadamard, Iynger and Ostrowski type inequalities via eta-convex functions. Some special cases are also discussed.
Keywords
Keywords
Full Text:
PDFReferences
P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity
assumptions. Demonstr. Math. 37(2), 299-308, (2004).
G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions
with generalized convexity, Carpath. J. Math, 31(2), 173-180, (2015).
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means
of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5), 91-95, (1998).
S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria
University Australia, (2000).
S. S. Dragomir, T. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration,
Springer Netherlands, 2002.
T. Ernst, A Comprehensive Treatment of q-Calculus, Springer Basel Heidelberg New York Dordrecht London.
T. Ernst, A Method for q-Calculus, J. Nonl. Math. Phy., 10(4), 487525, (2003).
H. Gauchman, Integral inequalities in q-calculus. Comput. Math. Appl. 47, 281-300 (2004).
M. E. Gordji, M. R. Delavar, On eta-convex functions, J. Math. Inequal. (2015).
M. E. Gordji, M. R. Delavar, S. S. Dragomir, Some inequalities related to eta-convex functions, RGMIA
Research Report Collection 18 (2015). Article 8.
D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of
University of Craiova, Math. Comp. Sci. Ser., 34, 82-87, (2007).
C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications, Springer-Verlag, New York,
M. A. Noor, M. U. Awan, K. I. Noor, On some inequalities for relative semi-convex functions, J. Inequal.
Appl. 2013, 2013:332.
M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Infor. Sci., 8(2),
-616, (2014).
M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions,
Filomat, 28(7), (2014), 1463-1474.
M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Applied
Math. Computation 251 (2015), 675-679.
M. A. Noor, K. I. Noor, M. U. Awan, Quantum Ostrowski inequalities for q-differentiable convex functions,
J. Math. Inequal. (2015).
M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math.
Comput. 269, (2015), 242-251.
SOME q-ANALOGUES 11
M. A. Noor, K. I. Noor, M. U. Awan, Quantum analogues of Hermite-Hadamard type inequalities for general-
ized convexity, In: Computation, Cryptography and Netwrok Security, (Ed. by: Nichloas Daras and Michael
Th. Rassias), Springer, Berlin, (2015).
M. A. Noor, T. M. Rassias, Some Quantum Hermite-Hadamard type inequalities for general convex functions,
In: Contributions in Mathematics and Engineering: In Honor of Constantin Caratheodory, (Ed. by: P. P.
Pardalos and T. M. Rassias), Springer, Berlin, (2015).
W. Sudsutad, S.K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. In-
equal., 9(3) (2015) 781-793.
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on ¯nite intervals, J. Inequal. App. 2014, 121
(2014).
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference
equations. Adv. Differ. Equ. 2013, 282 (2013).
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)