ON LACUNARY STATISTICAL BOUNDEDNESS OF ORDER $\alpha$

Mikail Et, Syed Abdul Mohiuddine, Hacer Sengul

DOI Number
-
First page
707
Last page
716

Abstract


The aim of this paper is to introduce and examine the concept of lacunary statistical boundedness of order $\alpha $ and give the relations between statistical boundedness and lacunary statistical boundedness of order $\alpha$.

Keywords


Density; statistical convergence; statistical boundedness; lacunary sequence

Full Text:

PDF

References


V. K. Bhardwaj and I. Bala, On weak statistical convergence, Int. J. Math. Math. Sci. 2007, Art. ID 38530, 9 pp.

V. K. Bhardwaj and S. Gupta, On some generalizations of statistical boundedness, J. Inequal. Appl. 2014, 2014:12.

V. K. Bhardwaj, S. Gupta, S.A. Mohiuddine and A. Kilic{c}man, On lacunary statistical boundedness, J. Inequal. Appl. 2014, 2014:311.

C. Belen and S. A. Mohiuddine, Generalized weighted

statistical convergence and application, Appl. Math. Comput. 219 (2013) 9821-9826.

R. c{C}olak, Statistical convergence of order $alpha ,$

Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121--129.

R. c{C}olak, On $lambda$-statistical convergence$,$

Conference on Summability and Applications, May 12-13, 2011, Istanbul Turkey.

J. S. Connor, The statistical and strong $p$-Ces`{a}ro

convergence of sequences, Analysis 8 (1988), 47-63.

M. Et, Strongly almost summable difference sequences of order $m$ defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463--476.

M. Et and H. c{S}eng"{u}l, Some Ces`{a}ro-type summability spaces of order $alpha $ and lacunary statistical convergence of order $alpha $ (under review).

H. Fast, Sur la convergence statistique, Colloq. Math. 2

(1951), 241-244.

A. R. Freedman, J. J. Sember and M. Raphael, Some

Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37(3) (1978), 508-520.

J. Fridy, On statistical convergence, Analysis 5 (1985),

-313.

J. Fridy and C. Orhan, Lacunary statistical

convergence, Pacific J. Math. 160 (1993), 43-51.

J. Fridy and C. Orhan, Statistical limit superior

and limit inferior, Proc. Amer. Math. Soc. 125(12) (1997), 3625-3631.

A. D. Gadjiev and C. Orhan, C. Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.

M. G"{u}ng"{o}r and M. Et, $Delta^{r}$-strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math. 34(8) (2003), 1141-1151.

B. Hazarika, S. A. Mohiuddine and M. Mursaleen, Some

inclusion results for lacunary statistical convergence in locally solid Riesz spaces, Iran. J. Sci. Tech. 38A1 (2014) 61-68.

M. Ic{s}i k Generalized vector-valued sequence spaces defined by modulus functions, J. Inequal. Appl. 2010, Art. ID 457892, 7 pp (2010).

S. A. Mohiuddine, A. Alotaibi and M. Mursaleen,

Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal. 2012, Art. ID 719729, 9 pp (2014).

S. A. Mohiuddine and M. Aiyub, Lacunary statistical

convergence in random 2-normed spaces, Applied Math. Inform. Sciences 6(3) (2012), 581-585.

S. A. Mohiuddine and M. A. Alghamdi, Statistical summability through a lacunary sequence in locally solid Riesz spaces, J. Inequal. Appl. 2012, 2012:225.

S. A. Mohiuddine, B. Hazarika, A. Alotaibi, Double lacunary density and some inclusion results in locally solid Riesz spaces, Abstr. Appl. Anal. Volume 2013, Article ID 507962, 8 pages (2013).

M. Mursaleen, $lambda$-statistical convergence, Math.

Slovaca, 50(1) (2000), 111-115.

D. Rath and B. C. Tripathy, On statistically

convergent and statistically Cauchy sequences, Indian J. Pure. Appl. Math., 25(4) (1994), 381-386.

I. J. Schoenberg, The integrability of certain

functions and related summability methods, Amer. Math. Monthly 66 (1959),

-375.

H. c{S}eng"{u}l and M. Et, On lacunary statistical

convergence of order $alpha ,$ Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014), 473-482.

T. Salat, On statistically convergent sequences of real

numbers, Math. Slovaca 30 (1980), 139-150.

H. Steinhaus, Sur la convergence ordinaire et la

convergence asymptotique, Colloq. Math. 2 (1951),73-74.

A. Zygmund, Trigonometrical Series, vol. 5 of Monograias de Matematicas, Warszawa-Lwow, 1935.

A. Zygmund, Trigonometric Series, Cambridge University

Press, Cambridge, UK, 2nd edition, 1979.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)