ON THE $\mathcal{M}$--PROJECTIVE CURVATURE TENSOR OF A $(k, \mu)$-CONTACT METRIC MANIFOLD
Abstract
Keywords
Keywords
Full Text:
PDFReferences
bibitem{BPV}
{sc C. S. Bagewadi, D. G. Prakasha {rm{and}} Venkatesha}: textit{On pseudo projective curvature tensor of a contact metric manifold}, SUT J. Math., {bf{43}}, No. 1 (2007), 115-126.
bibitem{DEB}
{sc D. E. Blair}: textit{Contact Manifolds in Riemannian Geometry,}, Lecture Notes in Math., {bf{509}}, Springer-Verlag, 1976.
bibitem{B}
{sc D. E. Blair}: textit{Two remarks on contact metric structures}, Tohoku Math. J., {bf{29}} (1977), 319-324.
bibitem{BKP}
{sc D. E. Blair, T. Koufogiorgos {rm{and}} B. J. Papantoniou}: textit{Contact metric manifolds satisfying a nullity condition,}, Israel J. Math., {bf{19}} (1995), 189-214.
bibitem{BKT}
{sc D. E. Blair, J. -S. Kim {rm{and}} M. M. Tripathi}: textit{On the concircular curvature tensor of a contact metric manifold}, J. Korean Math. Soc., {bf{42}}, (5) (2005), 883-892.
bibitem{BE}
{sc E. Boeckx}: textit{A full classification of contact metric $(k, mu)$-spaces,}, Illinois
J. Math., {bf{44}} (2000), pp. 212-219.
bibitem{SKC}
{sc S. K. Chaubey {rm{and}} R. H. Ojha}: textit{On the $M$-projective curvature tensor on Kenmotsu manifolds}, Different. Goem. Dynam. Syst., {bf 12} (2010), 52-60.
bibitem{JTC}
{sc J. T. Cho}: textit{A conformally flat $(k, mu)$-space}, Indian J. Pure. Appl. Math., {bf 32} (2001), 501-508.
bibitem{DKS}
{sc U. C. De, Y. H. Kim {rm{and}} A. A. Shaikh}: textit{Contact metric manifolds with $xi$ belonging to $(k, mu)$-nullity distribution}, Indian J. Math., {bf 47} (2005), 1-10.
bibitem{DS1}
{sc U. C. De, {rm{and}} A. Sarkar}: textit{On the quasi-conformal curvature tensor of a $(k, mu)$-contact metric manifold}, Math. Reports, Volume {bf 14 (64)}, 2(2012), 115-129.
bibitem{DE}
{sc U. C. De {rm{and}} P. Pal}: textit{On generalized $M$-projectively recurrent manifolds}, Ann. Univ. Paedagog. Crac. Stud. Math., {bf 13} (2014), 77-101.
bibitem{DS}
{sc U. C. De {rm{and}} S. Samui}: textit{$E$-Bochner curvature tensor on $(k, mu)$-contact metric manifolds}, Int. Electron. J. Geom., Volume {bf 7} No. 1, (2014) pp. 143-153.
bibitem{GKS}
{sc A. Ghosh, T. Koufogiorgos {rm{and}} R. Sharma}: textit{Conformally flat contact metric manifolds}, J. Geom., {bf 70} (2001), 66-76.
bibitem{RHO1}
{sc R. H. Ojha}: textit{A note on the $M$-projective curvature tensor,}, Indian J. Pure Appl. Math., {bf{8}} (12) (1975), 1531-1534.
bibitem{RHO2}
{sc R. H. Ojha}: textit{$M$-projectively flat Sasakian manifolds,}, Indian J. Pure Appl. Math., {bf{17}} (4) (1986), 481-484.
bibitem{BJP}
{sc B. J. Papantoniou}: textit{contact Riemannian manifolds satisfying $R(xi, X)cdot R = 0$ and $xi$ $in (k, mu)$}-nullity distribution, Yokohama Math. J., {bf{40}} (1993), No. 2, pp. 149-161.
bibitem{PM}
{sc G. P. Pokhariyal {rm{and}} R. S. Mishra}: emph{Curvature tensor and their relativistic significance II,}, Yokohama Math. J., {bf{19}} (1971), 97--103.
bibitem{ST}
{sc S. Tanno}: textit{Ricci curvatures of contact Riemannian manifolds}, Tohoku Math. J., {bf{40}} (1988), pp. 441-448.
bibitem{YD}
{sc A. Yildiz {rm{and}} U. C. De}: textit{A classification of $(k, mu)$-contact metric manifolds}, Commun. Korean Math. Soc., {bf{27}} (2012), No. 2, 327-339.
DOI: https://doi.org/10.22190/FUMI1701117P
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)