ON DECOMPOSABLE AND WARPED PRODUCT GENERALIZED QUASI EINSTEIN MANIFOLDS

Prajjwal Pal, Sahanous Mallick

DOI Number
10.22190/FUMI1605061P
First page
1061
Last page
1071

Abstract


The object of the present paper is to study decomposable and warped product
generalized quasi Einstein manifolds.


Keywords

Einstein manifold; Warped product; Ricci tensor; Generalized quasi- Einstein manifolds

Keywords


Generalized quasi Einstein manifolds, Decomposable and warped product generalized quasi Einstein manifolds

Full Text:

PDF

References


C. L. Bejan and T. Q. Binh:Generalized Einstein manifolds, WSPCProceedings, Trim Size, dga 2007, 47 − 54.

A. L. Besse: Einstein manifolds, Ergeb. Math. Grenzgeb., Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

R. L. Bishop and B. O’Neill: Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1969), 1 − 49.

T. E. Cecil and P. J. Ryan: Tight and Taut Immersions of Manifolds, Research Notes in Mathematics, 107, Pitman (Advanced Publishing Program), Boston, M. A., 1985.

M. C. Chaki and R. K. Maity: On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297 − 306.

M. C. Chaki: On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683 − 691.

M. C. Chaki: On super quasi-Einstein manifolds, Publ. Math. Debrecen, 64(2004), 481 − 488.

U. C. De and B. K. De: On quasi-Einstein manifolds, Commun. Korean Math. Soc., 23(2008), 413 − 420.

U. C. De and G. C. Ghosh: On quasi Einstein manifolds, Periodica Math. Hungarica, 48(2004), 223 − 231.

U. C. De and G. C. Ghosh: On generalized quasi Einstein manifolds, Kyungpook Math. J., 44(2004), 607 − 615.

U. C. De and G. C. Ghosh: On conformally flat special quasi Einstein manifolds, Publ. Math. Debracen, 66(2005), 129 − 136.

U. C. De and G. C. Ghosh: On quasi-Einstein and special quasi-Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its applications, Kuwait University, April 5 − 7, 2004, 178 − 191.

P. Debnath and A. Konar: On super quasi-Einstein manifolds, Publications de L’institute Mathematique, Nouvelle serie, Tome 89(2011), 95 − 104.

P. Debnath and A. Konar: On quasi-Einstein manifolds and quasi-Einstein spacetimes, Differ. Geom. Dyn. Syst., 12(2010), 73 − 82.

U. C. De and S. Mallick: On the existence of generalized quasi Einstein manifolds, Archivum Mathematicum (Brno), Tomus, 47(2011), 279 − 291.

G. C. Ghosh, U. C. De and T. Q. Binh: Certain curvature restrictions on a quasi-Einstein manifold, Publ. Math. Debrecen, 69(2006), 209 − 217.

A. A. Hosseinzadeh and A. Taleshian: On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold, Commun. Korean Math. Soc., 27(2012), 317 − 326.

G. I. Kručkovič: On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115(1957), 862 − 865 (in Russian).

C. ¨ Ozg¨ur: On a class of generalized quasi-Einstein manifolds, Applied Sciences, Balkan Society of Geometers, Geometry Balkan Press, 8(2006), 138 − 141.

C. Özgür: N(k)-quasi-Einstein manifolds satisfying certain conditions, Chaos, Solitons and Fractals, 38(2008), 1373 − 1377.

C. Özgür: On some classes of super quasi-Einstein manifolds, Chaos, Solitons and Fractals, 40(2009), 1156 − 1161.

C. Özgür and S. Sular: On some properties of generalized quasi-Einstein manifolds, Indian Journal of Mathematics, 50(2008), 297 − 302.

J. A. Schouten: Ricci-Calculus, An introduction to Tensor Analysis and its Geometrical Applications, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.

S. Sular and C. Özgür: On quasi-Einstein warped products, Ann. St. Univ. “Al I Cuza” Iasi (S.N.), Tomul 58(2012), 353 − 362.

A. Taleshian and A. A. Hosseinzadeh: Investigation of Some Conditions on N(k)-quasi-Einstein manifolds, Bull. Malays. Math. Soc., 34(2011), 455 − 464.

K. Yano and M. Kon: Structures on manifolds, World scientific, Singapore, 1984, 418 − 421.




DOI: https://doi.org/10.22190/FUMI1605061P

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)