A general fixed point theorem for a pair of self mappings with common limit range property in G - metric spaces
Abstract
Keywords
Full Text:
PDFReferences
bibitem{1} A. Aamri and D. El Moutawakil, Some new common fixed point
theorems under strict contractive conditions, Math. Anal. Appl. 270 (2002)
-188.
bibitem{2} M. Abbas and B. E. Rhoades, Common fixed point results for
noncommuting mappings without continuity in generalized metric spaces, Appl.
Math. Comp. 215 (2009) 262-269.
bibitem{3} M. Akkouchi, Well posedness and common fixed points for two
pairs of maps using weak contractivity, Demonstr. Math. 46, 2 (2013) 373-382.
bibitem{4} Ya. I. Alber and S. Guerre - Delabrierre, Principle of weakly
contractive maps in Hilbert spaces, New results in aferente theory, Adv.
Appl. Math. (Ed. by Y. Gahbery and Yu. Lybrch), Birkh"{a}user, Berlag,
Basel, vol. 98 (1997) 7-22.
bibitem{5} J. Ali and M. Imdad, An implicit function implies several
contractive conditions, Sarajevo J. Math. 17, 4 (2008) 269-285.
bibitem{6} J. Aydi, S. Chauchan and S. Radenovi'{c}, Fixed points of
weakly compatible mappings in $G$ - metric spaces satisfying common limit
range property, Facta Universitatis (Ni'{s}), Ser. Math. Inform. 28, 2
(2013) 197-210.
bibitem{7} G. V. R. Babu, M. L. Sandhya and M. V. R. Kameswari, A note on a
fixed point theorem of Berinde on weak contractions, Carpathian J. Math. 24,
(2008) 8-12.
bibitem{8} G. V. R. Babu and R. D. Sailaga, Common fixed points on $%
(varphi ,psi )$ - weak contractions with property $(E.A)$, Intern. J.
Math. and Sci. Computing 1, 2 (2010) 29-32.
bibitem{9} I. Beg and M. Abbas, Coincidence points and invariant
approximations for mappings satisfying generalized weak contractive maps, J.
Adv. Res. Pure Math. 2 (2010) 89-106.
bibitem{10} V. Berinde, On the approximations of fixed points of weak
contractive mappings, Carpathian J. Math. 19, 1 (2003) 7-22.
bibitem{11} V. Berinde, Approximating fixed points of weak $varphi $ -
contraction, Fixed Point Theory 4 (2003) 131-142.
bibitem{12} V. Berinde, Approximating fixed points of weak contraction
using the Picard iterations, Nonlinear Anal. Forum 9, 1 (2004) 43-53.
bibitem{13} V. Berinde, General contractive fixed point theorems for Ciri%
'{c} type almost contractions in metric spaces, Carpathian J. Math. 24, 2
(2008) 10-19.
bibitem{14} V. Berinde, Approximating common fixed points of noncommuting
almost contractions in metric spaces, Fixed Point Theory 11 (2010) 10-19.
bibitem{15} A. Branciari, A fixed point theorem for mappings satisfying a
general contractive condition of integral type, Intern. J. Math. Math. Sci.
, 2 (2002) 531-536.
bibitem{16} B. S. Choudhury, P. Konar, B. E. Rhoades and N. Metyia, Fixed
point theorems of generalized weakly contractive mappings, Nonlinear Anal.
(2011) 2116-2126.
bibitem{17} B. C. Dhage, Generalized metric spaces and mappings with fixed
point, Bull. Calcutta Math. Soc. 84 (1992) 329-336.
bibitem{18} B. C. Dhage, Generalized metric spaces and topological
structures I, Anal. c{S}t. Univ. Al. I. Cuza, Iac{s}i Ser. Mat. 46, 1
(2000) 3-24.
bibitem{19} D. Dori'{c}, Common fixed points for generalized $(psi
,varphi )$ - weak contractions, Appl. Math. Letter 22 (2009) 1896-1900.
bibitem{20} M. Imdad, M. Pant and B. C. Chauhan, Fixed point theorems in
Manger spaces using $CLR_{(S,T)}$ - property and applications, J. Nonlinear
Anal. Optim. 312, 2 (2012) 225-237.
bibitem{21} M. Imdad, S. Chauhan and Z. Kadelburg, Fixed point theorems for
mappings with common limit range property satisfying generalized $(psi
,varphi )$ - weak contractive conditions, Math. Sci. 7 (16) (2013)
doi:10.1186/2251-7456-7-16.
bibitem{22} M. Imdad and S. Chauhan, Employing common limit range property
to prove unified metrical common fixed point theorems, Intern. J. Anal. vol.
, Article ID 763261, 10 pages.
bibitem{23} G. Jungck, Compatible mappings and common fixed points, Intern.
J. Math. Math. Sci. 9 (1980) 771-779.
bibitem{24} G. Jungck, Common fixed points for noncontinuous nonself maps
on a nonnumeric space, Far East J. Math. Sci. 4 (1996) 195-215.
bibitem{25} E. Karapinar, D. K. Patel, M. Imdad and D. Gopal, Some
non-unique common fixed point theorems in symmetric spaces through $%
CLR_{(S,T)}$ property, Int. J. Math. Math. Sci. 2013, Article ID 753965, 8
pages.
bibitem{26} M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorem by
altering distances between the points, Bull. Austral. Math. Soc. 30 (1984)
-9.
bibitem{27} S. Kumar, R. Chugh, and R. Kumar, Fixed point theorem for
compatible mappings satisfying a contractive condition of integral type,
Soochow J. Math. 33, 2 (2007) 181-185.
bibitem{28} J. Matkowski, Fixed point theorems for mappings with a
contractive iterate at a point. Proc. Am. Math. Soc.. 62, 2 (1997) 344-348.
bibitem{29} Z. Mustafa and B. Sims, Some remarks concerning $D$ -- metric
spaces, Proc. Conf. Fixed Point Theory and Applications, Valencia (Spain),
, 189-198.
bibitem{30} Z. Mustafa and B. Sims, A new approach to generalized metric
spaces, J. Nonlinear Convex Analysis 7 (2006) 287-297.
bibitem{31} Z. Mustafa, H. Obiedat and F. Awadeh, Some fixed point theorems
for mappings on $G$ - metric spaces, Fixed Point Theory Appl. 2008, Article
ID 189870, 12 pages.
bibitem{32} Z. Mustafa and B. Sims, Fixed point theorems for contractive
mappings in complete $G$ - metric space, Fixed Point Theory Appl. 2009,
Article ID 917175, 10 pages.
bibitem{33} Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in $G$
- metric spaces, Cubo 12 (2010) 73-93.
bibitem{34} Z. Mustafa, M. Khandaqji and W. Shatanawi, Fixed point results
on complete $G$ - metric spaces, Studia Sci. Math. Hungar. 48 (3) (2011)
-315.
bibitem{35} R. P. Pant, Common fixed point for contractive maps, J. Math.
Anal. Appl. 226 (1998) 251-258.
bibitem{36} R. P. Pant, $R$ -- weak commutativity and common fixed points
of noncompatible map, Ganita 99 (1998) 19-26.
bibitem{37} R. P. Pant, $R$ -- weak commutativity and common fixed points,
Soochow J. Math. 25 (1999) 37-42.
bibitem{38} R. P. Pant, Common fixed point of noncommuting mappings, J.
Math. Anal. Appl. 188 (1994) 436-440.
bibitem{39} R. P. Pant, Common fixed points for four mappings, Bull.
Calcutta Math. Soc. 9 (1998) 281-287.
bibitem{40} H. Pathak, R. Rodriguez-L'{o}pez, R. K. Verma, A common fixed
point theorem of integral type using implicit relation, Nonlinear Functional
Anal. Appl. 15, 1 (2010) 1-12.
bibitem{41} H. Pathak, R. Rodriguez-L'{o}pez, R. K. Verma, A common fixed
point theorem using implicit relation and property $(E.A)$ in metric spaces,
Filomat 21, 2 (2007) 211-234.
bibitem{42} V. Popa, Some fixed point theorems for implicit contractive
mappings, Stud. Cerc. c{S}t. Ser. Mat. Univ. Bacu{a}u 7 (1997) 129-133.
bibitem{43} V. Popa, Some fixed point theorems for compatible mappings
satisfying an implicit relation, Demontr. Math. 32, 1 (1999) 157-163.
bibitem{44} V. Popa, A general fixed point theorem for several mappings
satisfying implicit relations in $G$ - metric spaces, Sci. Stud. Research
Ser. Math. Inform. 21, 1 (2011) 205-214.
bibitem{45} V. Popa, On some fixed point theorems for implicit almost
contractive mappings, Carpathian J. Math. 29, 2 (2013) 223-229.
bibitem{46} V. Popa and M. Mocanu, A new viewpoint in the study of fixed
points for mappings satisfying a contractive condition of integral type,
Bull. Inst. Politehn. Iac{s}i, Secc{t}. Mat. Mec. Teor. Fiz. 53 (57),
Fasc. 5 (2007) 269-286.
bibitem{47} V. Popa and M. Mocanu, Altering distances and common fixed
points under implicit relations, Hacettepe J. Math. Statistics, 38, 3 (2009)
-337.
bibitem{48} V. Popa and A.-M. Patriciu, A general fixed point theorem for
pair of weakly compatible mappings in $G$ -- metric spaces, J. Nonlinear
Sci. Appl., 5, 2 (2012) 151-160.
bibitem{49} V. Popa and A.-M. Patriciu, Two general fixed point theorems
for pairs of weakly compatible mappings in $G$ -- metric spaces, Novi Sad J.
Math. 42, 2 (2012) 49-60.
bibitem{50} V. Popa and A.-M. Patriciu, Fixed point results on complete $G$
-- metric spaces for mappings satisfying implicit relations of new type,
Ukrainian Math. J. 65, 6 (2013) 816-821.
bibitem{51} O. Popescu, Fixed point for $(psi ,varphi )$ - weak
contractions, Appl. Math. Letter 24 (2011) 1-4.
bibitem{52} A. Ranim S. Kumar, N. Kumar and S. K. Garg, Common fixed point
theorems for compatible and weakly compatible maps in $G$ - metric spaces,
Appl. Math. 3 (2012) 1128-1134.
bibitem{53} B. E. Rhoades, Some theorems of weakly contractive maps,
Nonlinear Anal. 47 (2001) 2683-2693.
bibitem{54} B. E. Rhoades, Two fixed point theorems for mappings satisfying
a general contractive condition of integral type, Intern. J. Math. Math.
Sci. 63 (2003) 4007-4013.
bibitem{55} K. P. Sastri and G. V. R. Babu, Fixed point theorems in metric
spaces by altering distances, Bull. Calcutta Math. Sci. 90 (1998) 175-182.
bibitem{56} K. P. Sastri and G. V. R. Babu, Some fixed point theorems by
altering distances between two points, Indian J. Pure Appl. Math. 30 (1999)
-647.
bibitem{57} W. Shatanawi, Fixed point theory for contractive mappings
satisfying $phi $ - maps in $G$ - metric spaces, Fixed Point Theory Appl.
, Article ID 181650, 9 pages.
bibitem{58} W. Sintunavarat and P. Kumam, Common fixed point theorems for a
pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. 3,
(2012), 225-237.
bibitem{59} C. Vetro, S. Chauhan, E. Karapinar and W. Shatanawi, Fixed
points of weakly compatible mappings satisfying generalized $varphi $ -
weak contractions (preprint).
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)