NULL CONTROLLABILITY OF DEGENERATE NONAUTONOMOUS PARABOLIC EQUATIONS
Abstract
$$
u_{t}-M(t)(a(x)u_{x})_{x}=h\chi_{\omega},\qquad (x,t)\in Q=(0,1)\times(0,T),$$ where $\omega=(x_{1},x_{2})$ is a
small nonempty open subset in $(0,1)$, $h\in L^{2}(\omega\times(0,T))$, the diffusion coefficients $a(\cdot)$ is
degenerate at $x=0$ and $M(\cdot)$ is non degenerate on $[0,T]$. Also the boundary conditions are considered to
be Dirichlet or Neumann type related to the degeneracy rate of $a(\cdot)$. Under some conditions on the functions
$a(\cdot)$ and $M(\cdot)$, we prove some global Carleman estimates which will yield the observability inequality
of the associated adjoint system and equivalently the null controllability of our parabolic equation.
Keywords
Keywords
Full Text:
PDFReferences
Acquistapace P, Terreni B. 1987. A unified approach to abstract linear nonautonomous parabolic equations. Rend. Sem. Mat. Univ. Padova. 78, 47-107.
Acquistapace P. 1988. Evolution operators and strong solutions of abstract linear parabolic equations. Differential Integral Equations. 1, 433-457.
Ait Ben Hassi E, Ammar-Khodja F, Hajjaj A , Maniar L. 2011. Null controllability of degenerate parabolic cascade systems. Portugaliae Mathematica. 68, 345-367.
Ait Ben Hassi E, Ammar-Khodja F, Hajjaj A, Maniar L. 2013. Carleman estimates and null controllability of coupled degenerate systems. Evolution Equations and Control Theory. to appear.
Alabau-Boussouria F, Cannarsa P, Fragnelli G. 2006. Carleman estimates for degen- erate parabolic operators with applications to null controllability. J. Evol. Equ. 6, 161-204.
Cabanillas V. R, Menezes S. B, Zuazua E. 2001. Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms. Journal of Optimization Theory and Applications. 110, 245-264.
Cannarsa P, Martinez P, Vancostenoble J. 2005. Null Controllability of degenerate heat equations. Adv. Differential Equations. 10, 153-190.
Cannarsa P, Martinez P, Vancostenoble J. 2008. Carleman estimates for a class of degenerate parabolic operators. SIAM, J. Control Optim. 47, 1-19.
Cannarsa P, Tort J, Yamamoto M. 2012. Unique continuation and approximate con- trollability for a degenerate parabolic equation. newblock Applicable Analysis. 91, 1409- 1425.
Gobbino M. 1999. Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci. 22 (5), 375-388.
De Teresa L, Zuazua E. 1999. Approximate controllability of the semilinear heat equa- tion in unbounded domains. Nonlinear Analysis TMA. 37, 1059-1090.
Fattorini H. O, Russell D. L. 1971. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rat. Mech. Anal. 4, 272-292.
Fernandez-Cara E. 1997. Null controllability of the semilinear heat equation. ESAIM: Control, Optim, Calv. Var. 2, 87-103.
Fernandez-Cara E, Limaco J, De Menezesc S. B. 2012. Null controllability for a parabolic equation with nonlocal nonlinearities. Systems and Control Letters. 61, 107-111.
Fernandez-Cara E, Zuazua E. 2000. Controllability for weakly blowing-up semilinear heat equations. Annales de l’Institut Henry Poincar´e, Analyse non lin´eaire. 17, 583- 616.
Fursikov A. V, Yu Imanuvilov O. 1996. Controllability of evolution equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea.
Lebeau G, Robbiano L. 1995. Controle exact de l’´equation de la chaleur. Comm. in PDE. 20, 335-356.
Lopez A, Zhang X, Zuazua E. 2000. Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79, 741–808.
Martinez P, Vancostenoble J. 2006. Carleman estimates for one-dimensional degener- ate heat equations. J. Evol. Equ. 6, 325-362.
Micu S, Zuazua E. 2001. On the lack of null controllability of the heat equation on the half-line. Trans. Amer. Math. Soc.52, 1635-1659.
Fotouhi M, Salimi L. 2012. Controllability results for a class of one dimensional degen- erate/singular Parabolic Equations. Journal of Dynamical and Control Systems, 18, 573–602.
Russell D. L. 1973. A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies in Applied Mathematics. 52, 189-221.
Tataru D. 1994. Apriori estimates of Carleman’s type in domains with boundary. Journal de Maths. Pures et Appliqu´ees. 73, 355-387.
Vancostenoble J. 2011. Improved Hardy-Poincare inequalities and sharp Carleman es- timates for degenerate-singular parabolic problems. Discrete.Contin. Dyn. Syst. Ser.S 4. 761-790.
DOI: https://doi.org/10.22190/FUMI1902311B
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)