TUBULAR SURFACES WITH DARBOUX FRAME IN GALILEAN 3-SPACE
Abstract
In this paper, we define tubular surface by using a Darboux frame instead of a Frenet frame. Subsequently, we compute the Gaussian curvature and the mean curvature of the tubular surface with a Darboux frame. Moreover, we obtain some characterizations for special curves on this tubular surface in a Galilean 3-space.
Keywords
Keywords
Full Text:
PDFReferences
H. S. Abdel-Aziz and M. Khalifa Saad: Weingarten Timelike Tube Surfaces
Around a Spacelike Curve, Int. J. Math. Anal., 5, (2011), 1225–1236.
M. Dede: Tubular surfaces in Galilean space, Math. Commun., 18, 2013, 209–217.
B. Divjak and Z. Milin: Sipus Minding isometries of ruled surfaces in pseudo-
Galilean Space, J. Geom., 77, (2003), 35–47.
F. Do˘ gan and Y. Yayli: Tubes with Darboux Frame, Int. J. Contemp.Math. Sci., 7(16), (2012), 751–758.
S. Kızıltu˘ g and Y. Yaylı: Timelike tubes with Darboux frame in Minkowski3- space, International Journal of Physical Sciences, 8(1), (2013), 31–36.
T. Maekawa, M. N. Patrikalakis, T. Sakkalis and G. Yu: Analysis and Applications of Pipe Surfaces, Comput. Aided Geom. Des., 15 (1998), 437–458.
J. S. Ro and D. W. Yoon: Tubes of Weingarten types in a Euclidean 3-space, Journal of the Chungcheong Mathematical Society, 22(3), (2009), 359–366.
Z. M. Sipus: Ruled Weingarten surfaces in Galilean Space, Period. Math. Hung., 56, (2008), 213–225.
T. S ¸ahin: Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space, Acta Mathematica Scientia, 33B(3), (2013), 701–
I. M. Yaglom: A Simple Non-Euclidean Geometry and Its Physical Basis, Springer, New York, USA, 1979.
DOI: https://doi.org/10.22190/FUMI1902253K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)