SUFFICIENT CONDITIONS FOR NONUNIFORM WAVELET FRAMES ON LOCAL FIELDS
Abstract
The main objective of this paper is to establish a set of sufficient conditions for nonuniform wavelet frames on local fields of positive characteristic. The conditions proposed are stated in terms of the Fourier transforms of the wavelet system’s generating functions.
Keywords
Keywords
Full Text:
PDFReferences
H. K. Jiang, D. F. Li and N. Jin: Multiresolution analysis on local fields. J.Math. Anal. Appl., 294 (2004), 523–532.
F. A. Shah: Nonuniform wavelet frames on local fields. preprint, 2017.
F. A. Shah: Periodic wavelet frames on local fields of positive characteristic. Numer. Funct. Anal. Optimizat. 37 (2016), 603–627.
F. A. Shah: Periodic wavelet frames on local fields of positive characteristic. Numer. Funct. Anal. Optimizat. 37 (2016), 603–627.
F. A. Shah and Abdullah: Nonuniform multiresolution analysis on local fields of positive characteristic. Complex Anal. Opert. Theory. 9 (2015), 1589–1608.
F. A. Shah and Abdullah: A characterization of tight wavelet frames on local fields of positive characteristic. J. Contemp. Math. Anal. 49 (2014), 251–259.
F. A. Shah and Abdullah: Wave packet frames on local fields of positive characteristic. Appl. Math. Comput. 249 (2014), 133–141.
F. A. Shah and M. Y. Bhat: Semi-orthogonal wavelet frames on local fields. Analysis.36 (2016), 173–182.
F. A. Shah and L. Debnath: Tight wavelet frames on local fields. Analysis. 33 (2013), 293–307.
F. A. Shah and L. Debnath: Minimum energy wavelet frames on local fields. Int. J. Appl. Comput. Math. (2017), DOI 10.1007/s40819-017-0310-z.
M. H. Taibleson: Fourier Analysis on Local Fields. Princeton University Press, Princeton, NJ, 1975
DOI: https://doi.org/10.22190/FUMI1704551S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)