Certain inequalities using Saigo fractional integral operator

Vaijanath L. Chinchane, Deepak B Pachpatte

DOI Number
-
First page
343
Last page
350

Abstract


The main objective of this paper is establish some new result onfractional integral inequalities by considering the extended Chebyshevfunctional in case of synchronous function. The result concerns withsome inequalities using one fractional parameter and two parameter.

Full Text:

PDF

References


G. A. Anastassiou, Fractional Dierentiation Inequalities, Springer Publishing Company,New York, NY, 2009.

S. Belarbi and Z. Dahmani, On some new fractional integral inequality, J. Inequal. Pure and Appl. Math., 10(3)(2009), Art.86, 5 pp.7

V.L. Chinchane and D.B. Pachpatte, A note on some integral inequalities via Hadamard integral, J. Fractional Calculus Appl. 4(11)(2013), 1-5.

V.L. Chinchane and D.B. Pachpatte, On some integral inequalities using Hadamard fractional integral, Malaya J. Math. 1(1)(2012), 62-66.

Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci, volume 9(4)(2010), 493-497.

Z. Dahmani, On Minkowski and Hermit-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal, 1(1)(2010), 51-58.

Z. Dahmani, The Riemann-Liouville operator to genarate some new inequalities, Int. J. Nonlinear Sci, 12(4)(2011), pp.452-455.

Z. Dahmani, Some results associate with fractional integrals involving the extended Chebyshev, Acta Univ. Apulensis Math. Inform. 27(2011), 217-224.

V. Kiryakova, On two Saigo's fractional integral operator in the class of univalent functions, Fract. Calc. Appl. Anal, 9(2)(2006).

V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser. 301, Longman Scientic and Technical, Harlow, 1994.

A. R. Prabhakaran and K. Srinivasa Rao, Saigo operator of fractional integration of Hypergeometric functions, International Journal of Pure and Applied Mathematics, 81(5) 2012, 755-763.

S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the Saigo fractional integral and their q- analogues, J. Math. Inequal., 7(2)(2013), 239-249.

S. D. Purohit, R. K. Yadav, On generalized fractional q-integral operator involving the q-Gauss Hypergeometric functions,Bull. Math. Anal. Appl.

(4)(2010), 35-44.

R. K. Raina, Solution of Abel-type integral equation involving the Appell hypergeometric function, Integral Transforms Spec. Funct, 21 (7) (2010),

-522.

M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep.Kyushu Univ, 11 (1978) 135-143.8

N. Virchenko and O. Lisetska, On some fractional integral operators involving generalized Gauss hypergeometric functions, Appl. Appl. Math.,

(10)(2010), 1418-1427.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)