FIXED POINT OF MULTIVALUED CONTRACTIONS IN ORTHOGONAL MODULAR METRIC SPACES
Abstract
In this paper we generalize the notion of O−set and establish some fixed
point theorems for ⊥ − α − ψ−contraction multifunction in the setting of orthogonal
modular metric spaces. As consequences of these results we deduce some theorems in
orthogonal modular metric spaces endowed with a graph and partial order. Finally,
we establish some theorems for integral type contraction multifunctions and give some
examples to demonstrate the validity of the results.
Keywords
Keywords
Full Text:
PDFReferences
Afrah A.N. Abdou and Mohamed A. Khamsi, On the fixed points of nonexpansive mappings in modular
metric spaces, Fixed Point Theory and Applications 2013, 2013:229.
Afrah A.N. Abdou and Mohamed A. Khamsi, Fixed points of multivalued contraction mappings in modular
metric spaces, Fixed Point Theory and Applications 2014, 2014:249
C. Alaca, M.E. Ege and C. Park, Fixed point results for modular ultrametric spaces, Journal of Computational
Analysis and Applications, 20(7), 1259-1267 (2016).
J.H. Asl, SH. Rezapour, N. Shahzad, On fixed point of α-contractive multifunctions, Fixed Point Theory
Applications, 2012, 2012:212.
H. Baghani, M. Eshaghi Gordji, M. Ramezani, Orthogonal sets: Their relation to the axiom choice and a generalized
fixed point theorem, Journal of Fixed Point Theory and Applications, (2016). DOI 10.1007/s11784-
-0297-9
P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed-point theorems for multivalued mappings
in modular metric spaces, Abstract and Applied Analysis, vol. 2012, Article ID 503504, 14 pages.
doi:10.1155/2012/503504
V.V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Analysis. 72(1) (2010), 1-14.
V.V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Analysis.
(1) (2010), 15-30.
L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. thesis (2002),University of
Freiburg, Germany.
M.E. Ege and C. Alaca, Fixed point results and an application to homotopy in modular metric spaces,
Journal of Nonlinear Science and Applications, 8(6), 900-908 (2015).
M.E. Ege and C. Alaca, Some properties of modular S-metric spaces and its fixed point results, Journal of
Computational Analysis and Applications, 20(1), 24-33 (2016).
M.E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear
equations, Azerbaijan Journal of Mathematics, 8(1), 1-11 (2018).
M. Eshaghi, M. Ramezani, M.D.L. Sen, Y.J. Cho, On orthogonal sets and Banach’s fxed point theorem,
Fixed point theorey, 18(2017), No. 2, 569–578, DOI 10.24193/FPT-RO.2017.2.45.
N. Hussain, Z. Kadelburg, S.Radenovic, F. Al- Solamy, Comparison functions and fixed points results in
partial metric spaces, Abstract and Applied Analysis, 2012(2012), 15-pages, doi:10.1155/2012/605781
N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued α − η − ψ -contractive
mappings, Fixed Point Theory Applications, 2013, 2031:212
J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the
American Mathematical Society 1 (136) (2008) 13591373.
R. Johnsonbaugh, Discrete mathematics, Prentice-Hall, Inc., New Jersey, 1997.
J. Martinez-Moreno, W. Sintunavarat and P. Kumam, Banachs contraction principle for nonlinear contraction
mappings in modular metric spaces, Bulletin of the Malaysian Mathematical Sciences Society, 40(1),
-344 (2017).
Ch. Mongkolkeha, W.Sintunavarat, P.Kumam, Fixed point theorems for contraction mappings in modular
metric spaces, Fixed Point Theory and Applications 2011, 2011:93
J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., vol. 1034, Springer, Berlin (1983).
S.B.Nadler, Jr., Multi-valued contraction mappings, Pacific Journal of Mathematics, vol. 30, pp. 475 488,
H. Nakano, Modulared semi-ordered linear spaces, Maruzen, Tokyo (1950).
W. Orlicz, Collected papers, Part I, II, PWN Polish Scientific Publishers, Warsaw (1988).
M. Paknazar and M. De la Sen, Best proximity point results in Non-Archimedean modular metric space,
Mathematics, 5(2), 23 doi:10.3390/math5020023 (2017).
A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to
matrix equations, Proceedings of the American Mathematical Society, 132 (2004), 1435-1443.
DOI: https://doi.org/10.22190/FUMI1902193H
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)