FIXED POINT OF MULTIVALUED CONTRACTIONS IN ORTHOGONAL MODULAR METRIC SPACES

Hoda Hosseini, Majid Eshaghi Gordji

DOI Number
https://doi.org/10.22190/FUMI1902193H
First page
193
Last page
212

Abstract


In this paper we generalize the notion of O−set and establish some fixed
point theorems for ⊥ − α − ψ−contraction multifunction in the setting of orthogonal
modular metric spaces. As consequences of these results we deduce some theorems in
orthogonal modular metric spaces endowed with a graph and partial order. Finally,
we establish some theorems for integral type contraction multifunctions and give some
examples to demonstrate the validity of the results.


Keywords

Fixed point theorem; metric space; contraction; partial order.

Keywords


⊥ − α − ψ−contraction multifunction, Integral type contraction multifunction, orthogonal modular metric space

Full Text:

PDF

References


Afrah A.N. Abdou and Mohamed A. Khamsi, On the fixed points of nonexpansive mappings in modular

metric spaces, Fixed Point Theory and Applications 2013, 2013:229.

Afrah A.N. Abdou and Mohamed A. Khamsi, Fixed points of multivalued contraction mappings in modular

metric spaces, Fixed Point Theory and Applications 2014, 2014:249

C. Alaca, M.E. Ege and C. Park, Fixed point results for modular ultrametric spaces, Journal of Computational

Analysis and Applications, 20(7), 1259-1267 (2016).

J.H. Asl, SH. Rezapour, N. Shahzad, On fixed point of α-contractive multifunctions, Fixed Point Theory

Applications, 2012, 2012:212.

H. Baghani, M. Eshaghi Gordji, M. Ramezani, Orthogonal sets: Their relation to the axiom choice and a generalized

fixed point theorem, Journal of Fixed Point Theory and Applications, (2016). DOI 10.1007/s11784-

-0297-9

P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed-point theorems for multivalued mappings

in modular metric spaces, Abstract and Applied Analysis, vol. 2012, Article ID 503504, 14 pages.

doi:10.1155/2012/503504

V.V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Analysis. 72(1) (2010), 1-14.

V.V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Analysis.

(1) (2010), 15-30.

L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. thesis (2002),University of

Freiburg, Germany.

M.E. Ege and C. Alaca, Fixed point results and an application to homotopy in modular metric spaces,

Journal of Nonlinear Science and Applications, 8(6), 900-908 (2015).

M.E. Ege and C. Alaca, Some properties of modular S-metric spaces and its fixed point results, Journal of

Computational Analysis and Applications, 20(1), 24-33 (2016).

M.E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear

equations, Azerbaijan Journal of Mathematics, 8(1), 1-11 (2018).

M. Eshaghi, M. Ramezani, M.D.L. Sen, Y.J. Cho, On orthogonal sets and Banach’s fxed point theorem,

Fixed point theorey, 18(2017), No. 2, 569–578, DOI 10.24193/FPT-RO.2017.2.45.

N. Hussain, Z. Kadelburg, S.Radenovic, F. Al- Solamy, Comparison functions and fixed points results in

partial metric spaces, Abstract and Applied Analysis, 2012(2012), 15-pages, doi:10.1155/2012/605781

N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued α − η − ψ -contractive

mappings, Fixed Point Theory Applications, 2013, 2031:212

J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the

American Mathematical Society 1 (136) (2008) 13591373.

R. Johnsonbaugh, Discrete mathematics, Prentice-Hall, Inc., New Jersey, 1997.

J. Martinez-Moreno, W. Sintunavarat and P. Kumam, Banachs contraction principle for nonlinear contraction

mappings in modular metric spaces, Bulletin of the Malaysian Mathematical Sciences Society, 40(1),

-344 (2017).

Ch. Mongkolkeha, W.Sintunavarat, P.Kumam, Fixed point theorems for contraction mappings in modular

metric spaces, Fixed Point Theory and Applications 2011, 2011:93

J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., vol. 1034, Springer, Berlin (1983).

S.B.Nadler, Jr., Multi-valued contraction mappings, Pacific Journal of Mathematics, vol. 30, pp. 475 488,

H. Nakano, Modulared semi-ordered linear spaces, Maruzen, Tokyo (1950).

W. Orlicz, Collected papers, Part I, II, PWN Polish Scientific Publishers, Warsaw (1988).

M. Paknazar and M. De la Sen, Best proximity point results in Non-Archimedean modular metric space,

Mathematics, 5(2), 23 doi:10.3390/math5020023 (2017).

A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to

matrix equations, Proceedings of the American Mathematical Society, 132 (2004), 1435-1443.




DOI: https://doi.org/10.22190/FUMI1902193H

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)