Some Symmetric Properties of Kenmotsu Manifolds Admitting Semi-Symmetric Metric Connection

Venkatesha Venkatesh, Arasaiah Arasaiah, Vishnuvardhana Srivaishnava Vasudeva, Naveen Kumar Rahuthanahalli Thimmegowda

DOI Number
https://doi.org/10.22190/FUMI1901035V
First page
35
Last page
44

Abstract


The object of the present paper is to study some symmetric properties
of Kenmotsu manifold endowed with a semi-symmetric metric connection. Here we
consider pseudo-symmetric, Ricci pseudo-symmetric, projective pseudo-symmetric and -projective semi-symmetric Kenmotsu manifold with respect to semi-symmetric metric connection. Finally, we provide an example of 3-dimensional Kenmotsu manifold admitting a semi-symmetric metric connection which verify our results.


Keywords

Kenmotsu manifold; projective curvature tensor; semi-symmetric metric connection; η-Einstein manifold

Keywords


Kenmotsu Manifolds; Semi-Symmetric Metric Connection; Symmetric Properties

Full Text:

PDF

References


Ajit Barman and U. C. De: Projective curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold. International Electronic Journal of Geometry. 6 (2013), 159-169.

K. Amur and S. S. Pujar: On submanifolds of a Riemannian manifold admitting a metric semi-symmetric connection. Tensor, N. S. 32 (1978), 35-38.

C. S. Bagewadi: On totally real submanifolds of a Kahlerian manifold admitting Semi symmetric metric F-connection. Indian. J. Pure. Appl. Math. 13 (1982), 528-536.

C. S. Bagewadi, D. G. Prakasha and Venkatesha: Projective curvature tensor on a Kenmotsu manifold with respect to semi-symmetric metric connection. Seria. Mathematica 17 (2007), 21-32.

A. Barman: On para-Sasakian manifolds admitting semi-symmetric metric connection. Publ. De L’Institut Math. 109 (2014), 239-247.

T. Q. Binh: On semi-symmetric connection. Periodica Math. Hungerica, 21 (1990), 101-107.

D. E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1976.

M. C. Chaki and B. Chaki: On pseudosymmetric manifolds admitting a type of

semisymmetric connection. Soochow J. Math. 13 (1987), 1-7.

U. C. De: On a type of semi-symmetric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 21 (1990), 334-338.

R. Deszcz: On pseudosymmetric spaces. Bull. Soc. Math. Belg., Ser. 44 (1992), 1-34.

A. Friedmann and J. A. Schouten: U¨ber die Geometric der halbsymmetrischen Ubertragung. Math. Zeitschr 21 (1924), 211-223.

H. A. Hayden: Subspaces of a space with torsion. Proc. London Math. Soc. 34 (1932), 27-50.

S. K. Hui and Richard S. Lemence: Ricci pseudosymmetric generalized quasiEinstein manifolds. SUT J.Math. 51 (2015), 195-213.

K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93-103.

D. G. Prakasha, Aysel Turgut Vanli and C. S. Bagewadi: Some classes of Kenmotsu manifolds with respect to semi-symmetric metric connection. Acta Mathematica Sinica. 29 (2013), 1311-1322.




DOI: https://doi.org/10.22190/FUMI1901035V

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)