η-RICCI SOLITONS IN (ϵ,δ)-TRANS SASAKIAN MANIFOLDS

Mohd Danish Siddiqi

DOI Number
https://doi.org/10.22190/FUMI1901045S
First page
45
Last page
56

Abstract


The object of the present research is to study the (ϵ,δ)-Trans
Sasakian manifolds addmitting the η-Ricci Solitons. It is shown that a sym-
metric second order covariant tensor in an (ϵ,δ)-Trans Sasakian manifold is
a constant multiple of metric tensor. Also an example of η-Ricci soliton in
3-diemsional (ϵ,δ)-Trans Sasakian manifold is provided in the region where
(ϵ,δ)-Trans Sasakian manifold expanding.


Keywords


η-Ricci Solitons, (ϵ,δ)-Trans Sasakian manifold, quasi conformal curvature tensor, pseudo-projective curvature tensor, Einstein manifold.

Full Text:

PDF

References


v[1] Blair, D. E. and Oubina, J. A., Conformal and related changes of metric on the product of

two almost contact metric manifolds, Publ. Mat. 34 (1990), 199-207.

Bejancu, A. and Duggal, K. L., Real hypersurfaces of indefnite Kaehler manifolds, Int. J.

Math and Math Sci., 16(3) (1993), 545-556.

Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no.

, 489-496.

Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015),

-13.

Blaga, A. M., Perktas, S. Y., Acet, B. L. and Erdogan, F. E., η-Ricci solitons in (ϵ)-almost

para contact metric manifolds, arXiv:1707.07528v2math. DG]25 jul. 2017.

Bagewadi, C. S. and Ingalahalli, G., Ricci Solitons in Lorentzian α-Sasakian Manifolds, Acta

Math. Acad. Paedagog. Nyhzi. (N.S.) 28(1) (2012), 59-68.

Bagewadi, C. S. and Ingalahalli, G., Ricci solitons in (ϵ,δ)-Trans-Sasakain manifolds, Int. J.

Anal.Apply., 2 (2017), 209-217.

Bagewadi, C. S. and Venkatesha, Some Curvature Tensors on a Trans-Sasakian Manifold,

Turk. J. Math., 31 (2007), 111-121.

η-RICCI SOLITONS IN (ϵ,δ)-TRANS SASAKIAN MANIFOLDS 9

Calin, C. and Crasmareanu, M., η-Ricci solitons on Hopf Hypersurfaces in complex space

forms, Rev. Roumaine Math. Pures Appl. 57 (2012), no. 1, 56-63 .

Cho, J. T. and Kimura, M., Ricci solitons and Real hypersurfaces in a complex space form,

Tohoku math.J., 61(2009), 205-212.

De, U. C. and Sarkar, A., On (ϵ)-Kenmotsu manifolds, Hadronic J. 32 (2009), 231-242.

De, U. C. and Tripathi, M. M., Ricci tensor in 3-dimensional Trans-Sasakian manifolds,

Kyungpook Math. J., 43(2) (2003), 247-255.

Eisenhart, L. P., Symmetric tensors of the second order whose first covariant derivatives are

zero, Trans. Amer. Math. Soc., 25(2) (1923), 297-306.

Gray, A. and Harvella, L. M., The sixteen classes of almost Hermitian manifolds and their

linear invariants, Ann. Mat. Pura Appl., 123(4) (1980), 35-58.

Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz.

CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988), 237-262.

Ingalahalli, G. and Bagewadi, C. S., Ricci solitons in (ϵ)-Trans-Sasakain manifolds, J. Tensor

Soc. 6 (1) (2012), 145-159.

Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(2)

(1972), 93-103.

Levy, H. Symmetric tensors of the second order whose covariant derivatives vanish, Ann.

Math. 27(2) (1925), 91-98.

Marrero, J. C., The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed

Appl. 162 (1992), 77-86.

Nagaraja, H. G., Premalatha, C. R. and Somashekhara, G., On (ϵ,δ)-Trans-Sasakian

Strucutre, Proc. Est. Acad. Sci. 61 (1) (2012), 20-28.

Nagaraja, H.G. and C.R. Premalatha, C. R., Ricci solitons in Kenmotsu manifolds, J. Math.

Anal. 3 (2) (2012), 18-24.

Oubina, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen 32

(1985), 187-193.

Prakasha, D. G. and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom.,

DOI 10.1007/s00022-016-0345-z.

Sharma, R., Certain results on K-contact and (k,µ)-contact manifolds, J. Geom., 89(1-2)

(2008), 138-147.

Shukla, S. S. and Singh, D. D., On (ϵ)-Trans-Sasakian manifolds, Int. J. Math. Anal. 49(4)

(2010), 2401-2414.

Siddiqi, M. D, Haseeb, A. and Ahmad, M., A Note On Generalized Ricci-Recurrent (ϵ,δ)-

Trans-Sasakian Manifolds, Palestine J. Math., Vol. 4(1), 156-163 (2015).

Tripathi, M. M., Ricci solitons in contact metric manifolds, arXiv:0801.4222 [math.DG].

Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons on 3-

dimensional trans-Sasakian manifolds, Filomat, 26(2) (2012), 363-370.

Vinu, K. and Nagaraja, H. G., η-Ricci solitons in trans-Sasakian manifolds, Commun. Fac.

sci. Univ. Ank. Series A1, 66 n0. 2 (2017), 218-224.

Xufeng, X. and Xiaoli, C., Two theorems on (ϵ)-Sasakain manifolds, Int. J. Math. Math.Sci.,

(2) (1998), 249-254




DOI: https://doi.org/10.22190/FUMI1901045S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)