η-RICCI SOLITONS IN (ϵ,δ)-TRANS SASAKIAN MANIFOLDS
Abstract
The object of the present research is to study the (ϵ,δ)-Trans
Sasakian manifolds addmitting the η-Ricci Solitons. It is shown that a sym-
metric second order covariant tensor in an (ϵ,δ)-Trans Sasakian manifold is
a constant multiple of metric tensor. Also an example of η-Ricci soliton in
3-diemsional (ϵ,δ)-Trans Sasakian manifold is provided in the region where
(ϵ,δ)-Trans Sasakian manifold expanding.
Keywords
Full Text:
PDFReferences
v[1] Blair, D. E. and Oubina, J. A., Conformal and related changes of metric on the product of
two almost contact metric manifolds, Publ. Mat. 34 (1990), 199-207.
Bejancu, A. and Duggal, K. L., Real hypersurfaces of indefnite Kaehler manifolds, Int. J.
Math and Math Sci., 16(3) (1993), 545-556.
Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no.
, 489-496.
Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015),
-13.
Blaga, A. M., Perktas, S. Y., Acet, B. L. and Erdogan, F. E., η-Ricci solitons in (ϵ)-almost
para contact metric manifolds, arXiv:1707.07528v2math. DG]25 jul. 2017.
Bagewadi, C. S. and Ingalahalli, G., Ricci Solitons in Lorentzian α-Sasakian Manifolds, Acta
Math. Acad. Paedagog. Nyhzi. (N.S.) 28(1) (2012), 59-68.
Bagewadi, C. S. and Ingalahalli, G., Ricci solitons in (ϵ,δ)-Trans-Sasakain manifolds, Int. J.
Anal.Apply., 2 (2017), 209-217.
Bagewadi, C. S. and Venkatesha, Some Curvature Tensors on a Trans-Sasakian Manifold,
Turk. J. Math., 31 (2007), 111-121.
η-RICCI SOLITONS IN (ϵ,δ)-TRANS SASAKIAN MANIFOLDS 9
Calin, C. and Crasmareanu, M., η-Ricci solitons on Hopf Hypersurfaces in complex space
forms, Rev. Roumaine Math. Pures Appl. 57 (2012), no. 1, 56-63 .
Cho, J. T. and Kimura, M., Ricci solitons and Real hypersurfaces in a complex space form,
Tohoku math.J., 61(2009), 205-212.
De, U. C. and Sarkar, A., On (ϵ)-Kenmotsu manifolds, Hadronic J. 32 (2009), 231-242.
De, U. C. and Tripathi, M. M., Ricci tensor in 3-dimensional Trans-Sasakian manifolds,
Kyungpook Math. J., 43(2) (2003), 247-255.
Eisenhart, L. P., Symmetric tensors of the second order whose first covariant derivatives are
zero, Trans. Amer. Math. Soc., 25(2) (1923), 297-306.
Gray, A. and Harvella, L. M., The sixteen classes of almost Hermitian manifolds and their
linear invariants, Ann. Mat. Pura Appl., 123(4) (1980), 35-58.
Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz.
CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988), 237-262.
Ingalahalli, G. and Bagewadi, C. S., Ricci solitons in (ϵ)-Trans-Sasakain manifolds, J. Tensor
Soc. 6 (1) (2012), 145-159.
Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(2)
(1972), 93-103.
Levy, H. Symmetric tensors of the second order whose covariant derivatives vanish, Ann.
Math. 27(2) (1925), 91-98.
Marrero, J. C., The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed
Appl. 162 (1992), 77-86.
Nagaraja, H. G., Premalatha, C. R. and Somashekhara, G., On (ϵ,δ)-Trans-Sasakian
Strucutre, Proc. Est. Acad. Sci. 61 (1) (2012), 20-28.
Nagaraja, H.G. and C.R. Premalatha, C. R., Ricci solitons in Kenmotsu manifolds, J. Math.
Anal. 3 (2) (2012), 18-24.
Oubina, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen 32
(1985), 187-193.
Prakasha, D. G. and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom.,
DOI 10.1007/s00022-016-0345-z.
Sharma, R., Certain results on K-contact and (k,µ)-contact manifolds, J. Geom., 89(1-2)
(2008), 138-147.
Shukla, S. S. and Singh, D. D., On (ϵ)-Trans-Sasakian manifolds, Int. J. Math. Anal. 49(4)
(2010), 2401-2414.
Siddiqi, M. D, Haseeb, A. and Ahmad, M., A Note On Generalized Ricci-Recurrent (ϵ,δ)-
Trans-Sasakian Manifolds, Palestine J. Math., Vol. 4(1), 156-163 (2015).
Tripathi, M. M., Ricci solitons in contact metric manifolds, arXiv:0801.4222 [math.DG].
Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons on 3-
dimensional trans-Sasakian manifolds, Filomat, 26(2) (2012), 363-370.
Vinu, K. and Nagaraja, H. G., η-Ricci solitons in trans-Sasakian manifolds, Commun. Fac.
sci. Univ. Ank. Series A1, 66 n0. 2 (2017), 218-224.
Xufeng, X. and Xiaoli, C., Two theorems on (ϵ)-Sasakain manifolds, Int. J. Math. Math.Sci.,
(2) (1998), 249-254
DOI: https://doi.org/10.22190/FUMI1901045S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)