INTEGRAL INEQUALITIES FOR HARMONICALLY s-GODUNOVA-LEVIN FUNCTIONS
Abstract
Keywords
Full Text:
PDFReferences
G. Cristescu and L. Lupsa, Non-connected
Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002.
S. S. Dragomir, Inequalities of hermite-hadamard type for $h$-convex functions on linear spaces, preprint, (2014).
S. S. Dragomir, $n$-points inequalities of hermite-hadamard type for $h$-convex functions on linear spaces, preprint, (2014).
S. S. Dragomir, B. Mond, Integral inequalities of Hadamard's type for $log$-convex functions, Demonstration Math. 2, 354-364,
(1998).
S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities
and applications, Victoria University, Australia (2000).
S. S. Dragomir, J. Pe$check{c}$ari$acute{c}$
and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math, 21, 335-341, (1995).
E. K. Godunova and V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy
funkii. Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva. 138-142, (1985).
I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, avaliable online
at http://arxiv.org/abs/1303.6089, (2013).
I. Iscan, Hermite-Hadamard type inequalities for
harmonically $(alpha,m)$-convex functions, avaliable online at http://arxiv.org/abs/1307.5402, (2013).
M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Infor. Sci., 8(2), 607-616, (2014).
M. A. Noor, K. I. Noor, M. U. Awan, Some characterizations of harmonically
$log$-convex functions, Proc. Jangjeon Math. Soc., 17(1), 51-61, (2014).
M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard Inequalities for some new classes of Godunova-Levin functions, Appl. Math. Infor. Sci, 8(6), 2865-2872, (2014).
M. A. Noor, F. Qi, M. U. Awan, Some Hermite-Hadamard type inequalities for
$log-h$-convex functions, Analysis, 33, 367-375, (2013).
J. E. Pecaric, F. Proschan, Y. L. Tong, Convex Functions, Partial
Orderings and Statistical Applications. Academic Press, New York
(1992).
T.-Y Zhang, A.-P. Ji, F. Qi, Integral inequalities of Hermite-Hadamard type
for harmonically quasi-convex functions, Proc. Jangjeon Math. Soc.,
(3), 399-407, (2013).
T-Y. Zhang A-P. Ji and F. Qi, Some inequalities of Hermite-Hadamard type for
GA-convex functions with applications to means, Le Matematiche vol.
LXVIII (2013) – Fasc. I, pp. 229–239 doi: 10.4418/2013.68.1.17.
D. S. Mitrinovic, J. Pecaric, Note on a class of
functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can.
, 33-36, (1990).
M. Radulescu. S. Radulescu, P. Alexandrescu, On the
Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12(4),
-862, (2009).
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)