INTEGRAL INEQUALITIES FOR HARMONICALLY s-GODUNOVA-LEVIN FUNCTIONS

Muhammad Uzair Awan

DOI Number
-
First page
415
Last page
424

Abstract


In this paper, some new classes of harmonically convex functions areintroduced and investigated. We derive several Hermite-Hadamard inequalities forthese new classes of harmonically convex functions. The ideas and techniques of thispaper may be extended for other classes of convex functions.

Keywords


Harmonically convex functions, Godunova-Levin func- tions, Hermite-Hadamard inequality

Full Text:

PDF

References


G. Cristescu and L. Lupsa, Non-connected

Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002.

S. S. Dragomir, Inequalities of hermite-hadamard type for $h$-convex functions on linear spaces, preprint, (2014).

S. S. Dragomir, $n$-points inequalities of hermite-hadamard type for $h$-convex functions on linear spaces, preprint, (2014).

S. S. Dragomir, B. Mond, Integral inequalities of Hadamard's type for $log$-convex functions, Demonstration Math. 2, 354-364,

(1998).

S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities

and applications, Victoria University, Australia (2000).

S. S. Dragomir, J. Pe$check{c}$ari$acute{c}$

and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math, 21, 335-341, (1995).

E. K. Godunova and V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy

funkii. Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva. 138-142, (1985).

I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, avaliable online

at http://arxiv.org/abs/1303.6089, (2013).

I. Iscan, Hermite-Hadamard type inequalities for

harmonically $(alpha,m)$-convex functions, avaliable online at http://arxiv.org/abs/1307.5402, (2013).

M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Infor. Sci., 8(2), 607-616, (2014).

M. A. Noor, K. I. Noor, M. U. Awan, Some characterizations of harmonically

$log$-convex functions, Proc. Jangjeon Math. Soc., 17(1), 51-61, (2014).

M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard Inequalities for some new classes of Godunova-Levin functions, Appl. Math. Infor. Sci, 8(6), 2865-2872, (2014).

M. A. Noor, F. Qi, M. U. Awan, Some Hermite-Hadamard type inequalities for

$log-h$-convex functions, Analysis, 33, 367-375, (2013).

J. E. Pecaric, F. Proschan, Y. L. Tong, Convex Functions, Partial

Orderings and Statistical Applications. Academic Press, New York

(1992).

T.-Y Zhang, A.-P. Ji, F. Qi, Integral inequalities of Hermite-Hadamard type

for harmonically quasi-convex functions, Proc. Jangjeon Math. Soc.,

(3), 399-407, (2013).

T-Y. Zhang A-P. Ji and F. Qi, Some inequalities of Hermite-Hadamard type for

GA-convex functions with applications to means, Le Matematiche vol.

LXVIII (2013) – Fasc. I, pp. 229–239 doi: 10.4418/2013.68.1.17.

D. S. Mitrinovic, J. Pecaric, Note on a class of

functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can.

, 33-36, (1990).

M. Radulescu. S. Radulescu, P. Alexandrescu, On the

Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12(4),

-862, (2009).


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)